Find the area of the region that lies inside the circle r = 3sin"\\theta" and outside the cardioid r = 1+sin"\\theta"
The cardioid intersects with the circle
"\\sin \\theta=\\dfrac{1}{2}"
The cardioid intersects with the circle at "(\\dfrac{3}{2},\\dfrac{\\pi}{6}),(\\dfrac{3}{2},\\dfrac{5\\pi}{6})" and the pole.
The area of interest has been shaded above.
To find the area of a polar curve, we use
"=\\dfrac{1}{2}\\displaystyle\\int_{\\pi\/6}^{5\\pi\/6}(8\\sin^2 \\theta-2\\sin\\theta-1)d\\theta"
"=\\dfrac{1}{2}\\displaystyle\\int_{\\pi\/6}^{5\\pi\/6}(3-4\\cos2 \\theta-2\\sin\\theta)d\\theta"
"=\\dfrac{1}{2}[3\\theta-2\\sin2\\theta+2\\cos \\theta]\\begin{matrix}\n 5\\pi\/6\\\\\n \\pi\/6\n\\end{matrix}"
"=\\dfrac{1}{2}(\\dfrac{5\\pi}{2}+\\sqrt{3}-\\sqrt{3}-\\dfrac{\\pi}{2}+\\sqrt{3}-\\sqrt{3})"
"=\\pi"
"\\pi" square units.
Comments
Leave a comment