The cardioid intersects with the circle
3 sin θ = 1 + sin θ 3\sin\theta=1+\sin \theta 3 sin θ = 1 + sin θ
sin θ = 1 2 \sin \theta=\dfrac{1}{2} sin θ = 2 1 The cardioid intersects with the circle at ( 3 2 , π 6 ) , ( 3 2 , 5 π 6 ) (\dfrac{3}{2},\dfrac{\pi}{6}),(\dfrac{3}{2},\dfrac{5\pi}{6}) ( 2 3 , 6 π ) , ( 2 3 , 6 5 π ) and the pole.
The area of interest has been shaded above.
To find the area of a polar curve, we use
A = 1 2 ∫ π / 6 5 π / 6 ( ( 3 sin θ ) 2 − ( 1 + sin θ ) 2 ) d θ A=\dfrac{1}{2}\displaystyle\int_{\pi/6}^{5\pi/6}((3\sin \theta)^2-(1+\sin \theta)^2)d\theta A = 2 1 ∫ π /6 5 π /6 (( 3 sin θ ) 2 − ( 1 + sin θ ) 2 ) d θ
= 1 2 ∫ π / 6 5 π / 6 ( 8 sin 2 θ − 2 sin θ − 1 ) d θ =\dfrac{1}{2}\displaystyle\int_{\pi/6}^{5\pi/6}(8\sin^2 \theta-2\sin\theta-1)d\theta = 2 1 ∫ π /6 5 π /6 ( 8 sin 2 θ − 2 sin θ − 1 ) d θ
= 1 2 ∫ π / 6 5 π / 6 ( 3 − 4 cos 2 θ − 2 sin θ ) d θ =\dfrac{1}{2}\displaystyle\int_{\pi/6}^{5\pi/6}(3-4\cos2 \theta-2\sin\theta)d\theta = 2 1 ∫ π /6 5 π /6 ( 3 − 4 cos 2 θ − 2 sin θ ) d θ
= 1 2 [ 3 θ − 2 sin 2 θ + 2 cos θ ] 5 π / 6 π / 6 =\dfrac{1}{2}[3\theta-2\sin2\theta+2\cos \theta]\begin{matrix}
5\pi/6\\
\pi/6
\end{matrix} = 2 1 [ 3 θ − 2 sin 2 θ + 2 cos θ ] 5 π /6 π /6
= 1 2 ( 5 π 2 + 3 − 3 − π 2 + 3 − 3 ) =\dfrac{1}{2}(\dfrac{5\pi}{2}+\sqrt{3}-\sqrt{3}-\dfrac{\pi}{2}+\sqrt{3}-\sqrt{3}) = 2 1 ( 2 5 π + 3 − 3 − 2 π + 3 − 3 )
= π =\pi = π π \pi π square units.
Comments