Question #336892

maximum or minimum of f(x, y) = x3+ y3– 63(x + y) + 12xy



1
Expert's answer
2022-05-04T17:27:38-0400

The two variables function is given by

F(x,y)=x3+y363(x+y)+12xyF(x,y) = x^3 + y^3 - 63(x+y) + 12xy


The first order partial derivatives of this function are

Fx=3x263+12yandFy=3y263+12xF_x = 3x^2 - 63 + 12y \, \, and \,\, F_y = 3y^2 - 63 + 12x


The second order partial derivatives of this function are

Fxx=6x,Fyy=6yandFxy=12F_{xx} = 6x \,\,\, , \,\,\, F_{yy} = 6y \,\,\, and \,\,\, F_{xy} = 12


To find critical points of this function, we have to set Fx=0andFy=0F_x = 0 \,\,\, and \,\,\, F_y = 0

Hence:

Fx=03x263+12y=012y=633x2F_x = 0 \\ \Rightarrow 3x^2 - 63 + 12y = 0 \\ \Rightarrow 12y = 63 - 3x^2

4y=21x2y=21x24\Rightarrow 4y = 21 - x^2 \\ \Rightarrow y = \frac{21 - x^2}{4} (Equation 1)


And:

Fy=03y263+12x=0y2+4x21=0F_y = 0 \\ \Rightarrow 3y^2 - 63 + 12x = 0 \\ \Rightarrow y^2 + 4x - 21 = 0

(21x2)216+4x21=0[y=21x24]\Rightarrow \frac{(21 - x^2)^2}{16} + 4x - 21 = 0 \hspace{1 cm} \left[ \because y = \frac{21 - x^2}{4} \right]

44142x2+x4+64x336=0x442x2+64x+105=0\Rightarrow 441 - 42x^2 + x^4 + 64x - 336 = 0 \\ \Rightarrow x^4 - 42x^2 + 64x + 105 = 0 \\

Using a graphing calculator, we get the solutions of this polynomial equation and which are:

x=7,x=1,x=3andx=5x = -7 \,\,\, , \,\,\, x = -1 \,\,\, , \,\,\, x = 3 \,\,\, and \,\,\, x = 5


Inserting x=7x = -7 into the (Equation 1), we have:

y=21(7)24y=7y = \frac{21 - (-7)^2}{4} \\ \Rightarrow y = -7

Inserting x=1x = -1 into the (Equation 1), we have:

y=21(1)24y=5y = \frac{21 - (-1)^2}{4} \\ \Rightarrow y = 5

Inserting x=3x = 3 into the (Equation 1), we have:

y=21324y=3y = \frac{21 - 3^2}{4} \\ \Rightarrow y = 3

Inserting x=5x = 5 into the (Equation 1), we have:

y=21524y=1y = \frac{21 - 5^2}{4} \\ \Rightarrow y = -1


Hence the critical points of this function are

(7,7),(1,5),(3,3)and (5,1)(-7, -7) \,\,\, , \,\,\, (-1,5) \,\,\, , \,\,\, (3,3) \,\,\, and \,\,\ (5, -1)


Now,

to classify the critical points and obtain the relative extrema values of this function, we will use the following value of  DD

D=FxxFyy(Fxy)2=(6x)(6y)(12)2=36xy144D = F_{xx} F_{yy} - (F_{xy})^2 \\ \,\,\,\,\,\, = (6x)(6y) -(12)^2 \\ \,\,\,\,\,\, = 36xy - 144


At (7,7)(-7,-7):

D=36(7)(7)144=1620>0D = 36(-7)(-7) - 144 \\ \,\,\,\,\,\,\, = 1620 > 0

and:

Fxx(7,7)=6(7)=42<0F_{xx} (-7,-7) \,= 6(-7) \\ \hspace{1 cm} \hspace{1 cm} = -42 < 0

At (1,5)(-1,5):

D=36(1)(5)144=324<0D = 36(-1)(5) - 144 \\ \,\,\,\,\,\,\, = -324 < 0

At (3,3)(3,3):

D=36(3)(3)144=180>0D = 36(3)(3) - 144 \\ \,\,\,\,\,\,\, = 180> 0

Fxx(3,3)=6(x)=18>0F_{xx} (3,3) \,= 6(x) \\ \hspace{1 cm} \hspace{1 cm} = 18 > 0

At (5,1)(5,-1):

D=36(5)(1)144=324<0D = 36(5)(-1) - 144 \\ \,\,\,\,\,\,\, = -324 < 0

So we can say that:

The saddle points of this function are

(5,1)and(1,5)(5,-1) \,\,\,\, and \,\,\,\, (-1,5)

The relative maximum of this function exists at (7,7)(-7,-7)

and

the relative minimum of this function exists at (3,3)(3,3)


The relative maximum value of the function is

F(7,7)=(7)3+(7)363(77)F(-7,-7) = (-7)^3 + (-7)^3 - 63(-7-7) +12(7)(7)+ 12(-7)(-7)

=784\hspace{1 cm} \,\,\,\,\,\,\,\,\,\,\,\,\, = 784

The relative minimum value of the function is

F(3,3)=33+3363(3+3)+12(3)(3)F(3,3) = 3^3 + 3^3 - 63(3+3) + 12(3)(3)

=216\hspace{1cm} \,\,= -216

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS