derivative y = arctan4(3x5)
Remind that the derivative of the composition of functionsf(g(x))f(g(x))f(g(x)) is: fx′(g(x))=fg′(g(x))g′(x)f'_x(g(x))=f'_g(g(x))g'(x)fx′(g(x))=fg′(g(x))g′(x). Thus, we get: y′=4(arctan3(3x5))(3x5)′1+9x10=60x4arctan3(3x5)1+9x10.y'=\frac{4(\arctan^3(3x^5))(3x^5)'}{1+9x^{10}}=\frac{60x^4\arctan^3(3x^5)}{1+9x^{10}}.y′=1+9x104(arctan3(3x5))(3x5)′=1+9x1060x4arctan3(3x5).
The answer is: y′=60x4arctan3(3x5)1+9x10y'=\frac{60x^4\arctan^3(3x^5)}{1+9x^{10}}y′=1+9x1060x4arctan3(3x5)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments