a)
Points of interception:
x 2 + y − 4 = 0 x − y + 2 = 0 x^2+y-4=0\\x-y+2=0 x 2 + y − 4 = 0 x − y + 2 = 0
x 2 + x + 2 − 4 = 0 x^2+x+2-4=0 x 2 + x + 2 − 4 = 0
x = − 2 x=-2 x = − 2 , x = 1 x=1 x = 1 .
V(S) can be obtained if we subtract volume
bounded by x − y + 2 = 0 x-y+2=0 x − y + 2 = 0 , y = 0 y=0 y = 0 , − 2 ≤ x ≤ 1 -2\le x\le1 − 2 ≤ x ≤ 1 and revolved about y = 0 y=0 y = 0
from the volume
bounded by x 2 + y − 4 = 0 x^2+y-4=0 x 2 + y − 4 = 0 , y = 0 y=0 y = 0 , − 2 ≤ x ≤ 1 -2\le x\le1 − 2 ≤ x ≤ 1 and revolved about y = 0 y=0 y = 0
V ( S ) = π ∫ − 2 1 ( ( − x 2 + 4 ) 2 − ( x + 2 ) 2 ) d x V(S)=\pi\int_{-2}^1((-x^2+4)^2-(x+2)^2)dx V ( S ) = π ∫ − 2 1 (( − x 2 + 4 ) 2 − ( x + 2 ) 2 ) d x = π ∫ − 2 1 ( x 4 − 8 x 2 + 16 − x 2 − 4 x − 4 ) d x =\pi\int_{-2}^1(x^4-8x^2+16-x^2-4x-4)dx = π ∫ − 2 1 ( x 4 − 8 x 2 + 16 − x 2 − 4 x − 4 ) d x
= π ( x 5 / 5 − 9 x 3 / 3 − 4 x 2 / 2 + 12 x ) ∣ − 2 1 =\pi(x^5/5-9x^3/3-4x^2/2+12x)|_{-2}^1 = π ( x 5 /5 − 9 x 3 /3 − 4 x 2 /2 + 12 x ) ∣ − 2 1 = π ( 1 / 5 − 3 − 2 + 12 + 32 / 5 − 3 ⋅ 8 =\pi(1/5-3-2+12+32/5-3\cdot8 = π ( 1/5 − 3 − 2 + 12 + 32/5 − 3 ⋅ 8 + 2 ⋅ 4 + 12 ⋅ 2 ) = 108 π / 5 +2\cdot4+12\cdot2) =108\pi/5 + 2 ⋅ 4 + 12 ⋅ 2 ) = 108 π /5
b)
Let’s move to new coordinates:
t = x + 2 t=x+2 t = x + 2
u=y
Now region R is bounded by
( t − 2 ) 2 + u − 4 = 0 (t-2)^2+u-4=0 ( t − 2 ) 2 + u − 4 = 0 and t − u = 0 t-u=0 t − u = 0
V(S) is obtained by revolving R about t = 0 t=0 t = 0
Look at the picture. Region R is divided into R1 and R2.
Volume V1 is obtained by revolving R1 about t = 0 t=0 t = 0 can be calculated by subtracting volume
bounded by t = 2 − 4 − u t=2-\sqrt{4-u} t = 2 − 4 − u , t = 0 t=0 t = 0 , 0 ≤ u ≤ 3 0\le u\le3 0 ≤ u ≤ 3 and revolved about t = 0 t=0 t = 0
from the volume
bounded by t = u t=u t = u , t = 0 t=0 t = 0 , 0 ≤ u ≤ 3 0\le u\le3 0 ≤ u ≤ 3 and revolved about t = 0 t=0 t = 0 .
V 1 = ∫ 0 3 π ( u 2 − ( 2 − 4 − u ) 2 ) d u V1=\int_0^3\pi(u^2-(2-\sqrt{4-u})^2)du V 1 = ∫ 0 3 π ( u 2 − ( 2 − 4 − u ) 2 ) d u
Volume V2 is obtained by revolving R2 about t = 0 t=0 t = 0 can be calculated by subtracting volume bounded by t = 2 − 4 − u t=2-\sqrt{4-u} t = 2 − 4 − u , t = 0 t=0 t = 0 , 3 ≤ u ≤ 4 3\le u\le4 3 ≤ u ≤ 4 and revolved about t = 0 t=0 t = 0
from the volume
bounded by t = 2 + 4 − u t=2+\sqrt{4-u} t = 2 + 4 − u , t = 0 t=0 t = 0 , 3 ≤ u ≤ 4 3\le u\le4 3 ≤ u ≤ 4 and revolved about t = 0 t=0 t = 0 .
V 2 = ∫ 3 4 π ( ( 2 + 4 − u ) 2 − ( 2 − 4 − u ) 2 ) d u V2=\int_3^4\pi((2+\sqrt{4-u})^2-(2-\sqrt{4-u})^2)du V 2 = ∫ 3 4 π (( 2 + 4 − u ) 2 − ( 2 − 4 − u ) 2 ) d u
V ( S ) = V 1 + V 2 = V(S)=V1+V2= V ( S ) = V 1 + V 2 = ∫ 0 3 π ( u 2 − ( 2 − 4 − u ) 2 ) d u + \int_0^3\pi(u^2-(2-\sqrt{4-u})^2)du+ ∫ 0 3 π ( u 2 − ( 2 − 4 − u ) 2 ) d u + ∫ 3 4 π ( ( 2 + 4 − u ) 2 − ( 2 − 4 − u ) 2 ) d u \int_3^4\pi((2+\sqrt{4-u})^2-(2-\sqrt{4-u})^2)du ∫ 3 4 π (( 2 + 4 − u ) 2 − ( 2 − 4 − u ) 2 ) d u
Comments