Question #325242

find the surface area of the object obtained by rotating y=4+3x^2, 1<=x<=2 about the y axis


1
Expert's answer
2022-04-08T13:32:25-0400

y=4+3x2y=4+3x^2 , 1x21\leq x\leq2

Express x as function of y:

x=13y4x=\frac{1}{\sqrt3}\sqrt{y-4} , 7y167\leq y\leq 16



The surface area can be calculated using the formula:

S=2π716x(y)1+(x(y))2dyS=2\pi\int_7^{16} x(y)\sqrt{1+(x'(y))^2}dy

x=1231y4x'=\frac{1}{2\sqrt3}\frac{1}{\sqrt{y-4}}

S=2π71613y41+1121y4dy=S=2\pi\int_7^{16} \frac{1}{\sqrt3}\sqrt{y-4}\sqrt{1+\frac{1}{12}\frac{1}{y-4}}dy=2π71613y41+1121y4dy=2\pi\int_7^{16} \frac{1}{\sqrt3}\sqrt{y-4}\sqrt{1+\frac{1}{12}\frac{1}{y-4}}dy=13π71612y47dy=13π2312(12y47)3/2716=\frac{1}{3}\pi\int_7^{16} \sqrt{12y-47}dy=\frac{1}{3}\pi\cdot\frac{2}{3\cdot12}(12y-47)^{3/2}|_7^{16}=13π2312(12y47)3/2716=π54(1453/2373/2)\frac{1}{3}\pi\cdot\frac{2}{3\cdot12}(12y-47)^{3/2}|_7^{16}=\frac{\pi}{54}(145^{3/2}-37^{3/2})88.49\approx88.49


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS