y = 4 + 3 x 2 y=4+3x^2 y = 4 + 3 x 2 , 1 ≤ x ≤ 2 1\leq x\leq2 1 ≤ x ≤ 2
Express x as function of y:
x = 1 3 y − 4 x=\frac{1}{\sqrt3}\sqrt{y-4} x = 3 1 y − 4 , 7 ≤ y ≤ 16 7\leq y\leq 16 7 ≤ y ≤ 16
The surface area can be calculated using the formula:
S = 2 π ∫ 7 16 x ( y ) 1 + ( x ′ ( y ) ) 2 d y S=2\pi\int_7^{16} x(y)\sqrt{1+(x'(y))^2}dy S = 2 π ∫ 7 16 x ( y ) 1 + ( x ′ ( y ) ) 2 d y
x ′ = 1 2 3 1 y − 4 x'=\frac{1}{2\sqrt3}\frac{1}{\sqrt{y-4}} x ′ = 2 3 1 y − 4 1
S = 2 π ∫ 7 16 1 3 y − 4 1 + 1 12 1 y − 4 d y = S=2\pi\int_7^{16} \frac{1}{\sqrt3}\sqrt{y-4}\sqrt{1+\frac{1}{12}\frac{1}{y-4}}dy= S = 2 π ∫ 7 16 3 1 y − 4 1 + 12 1 y − 4 1 d y = 2 π ∫ 7 16 1 3 y − 4 1 + 1 12 1 y − 4 d y = 2\pi\int_7^{16} \frac{1}{\sqrt3}\sqrt{y-4}\sqrt{1+\frac{1}{12}\frac{1}{y-4}}dy= 2 π ∫ 7 16 3 1 y − 4 1 + 12 1 y − 4 1 d y = 1 3 π ∫ 7 16 12 y − 47 d y = 1 3 π ⋅ 2 3 ⋅ 12 ( 12 y − 47 ) 3 / 2 ∣ 7 16 = \frac{1}{3}\pi\int_7^{16} \sqrt{12y-47}dy=\frac{1}{3}\pi\cdot\frac{2}{3\cdot12}(12y-47)^{3/2}|_7^{16}= 3 1 π ∫ 7 16 12 y − 47 d y = 3 1 π ⋅ 3 ⋅ 12 2 ( 12 y − 47 ) 3/2 ∣ 7 16 = 1 3 π ⋅ 2 3 ⋅ 12 ( 12 y − 47 ) 3 / 2 ∣ 7 16 = π 54 ( 14 5 3 / 2 − 3 7 3 / 2 ) \frac{1}{3}\pi\cdot\frac{2}{3\cdot12}(12y-47)^{3/2}|_7^{16}=\frac{\pi}{54}(145^{3/2}-37^{3/2}) 3 1 π ⋅ 3 ⋅ 12 2 ( 12 y − 47 ) 3/2 ∣ 7 16 = 54 π ( 14 5 3/2 − 3 7 3/2 ) ≈ 88.49 \approx88.49 ≈ 88.49
Comments