A firm's average revenue function AR=−18−7,5Q+Q2.AR=−18−7,5Q+Q2.
Determine the number of units to be produced and sold to maximise revenue.
AR=RQ⇒R=QAR=−18Q−7.5Q2+Q3→maxSincelimQ→+∞(−18Q−7.5Q+Q3)=+∞,there is no maxvalue.AR=\frac{R}{Q}\Rightarrow R=QAR=-18Q-7.5Q^2+Q^3\rightarrow \max \\Since\\\underset{Q\rightarrow +\infty}{\lim}\left( -18Q-7.5Q+Q^3 \right) =+\infty ,\\there\,\,is\,\,no\,\,\max value. \\AR=QR⇒R=QAR=−18Q−7.5Q2+Q3→maxSinceQ→+∞lim(−18Q−7.5Q+Q3)=+∞,thereisnomaxvalue.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments