Question #318544

Find the derivative using chain rule-d/dx: 


5.y = (4x - 9) * (3x - 4) ^ 2


6.y = x/(x ^ 2 - 2) ^ 2)


7.) y =(x²-7)²(2x - 5)³


8. y = (x ^ 4 - 2x) ^ 2/(x - 1) ^ 3


9. y = sqrt(x - 2) ^ 2


10.) y = (x ^ 3 + x ^ 2) ^ 2 * (x - 1) ^ 3


1
Expert's answer
2022-03-31T13:41:26-0400

5.


ddx((4x9)(3x4)2)=ddx(4x9)(3x4)2+ddx((3x4)2)(4x9)=\frac{d}{dx}\left(\left(4x-9\right)\left(3x-4\right)^2\right)=\frac{d}{dx}\left(4x-9\right)\left(3x-4\right)^2+\frac{d}{dx}\left(\left(3x-4\right)^2\right)\left(4x-9\right)=


=4(3x4)2+6(3x4)(4x9)=108x2354x+280=4\left(3x-4\right)^2+6\left(3x-4\right)\left(4x-9\right)=108x^2-354x+280


6.


ddx(x(x22)2)=ddx(x)(x22)2ddx((x22)2)x((x22)2)2=1(x22)24x(x22)x((x22)2)2=3x22(x22)3\frac{d}{dx}\left(\frac{x}{\left(x^2-2\right)^2}\right)=\frac{\frac{d}{dx}\left(x\right)\left(x^2-2\right)^2-\frac{d}{dx}\left(\left(x^2-2\right)^2\right)x}{\left(\left(x^2-2\right)^2\right)^2}=\frac{1\cdot \left(x^2-2\right)^2-4x\left(x^2-2\right)x}{\left(\left(x^2-2\right)^2\right)^2}=\frac{-3x^2-2}{\left(x^2-2\right)^3}


7.


ddx((x27)2(2x5)3)=ddx((x27)2)(2x5)3+ddx((2x5)3)(x27)2=\frac{d}{dx}\left(\left(x^2-7\right)^2\left(2x-5\right)^3\right)=\frac{d}{dx}\left(\left(x^2-7\right)^2\right)\left(2x-5\right)^3+\frac{d}{dx}\left(\left(2x-5\right)^3\right)\left(x^2-7\right)^2=


=4x(x27)(2x5)3+6(2x5)2(x27)2=4x\left(x^2-7\right)\left(2x-5\right)^3+6\left(2x-5\right)^2\left(x^2-7\right)^2


8.


ddx((x42x)2(x1)3)=ddx((x42x)2)(x1)3ddx((x1)3)(x42x)2((x1)3)2=\frac{d}{dx}\left(\frac{\left(x^4-2x\right)^2}{\left(x-1\right)^3}\right)=\frac{\frac{d}{dx}\left(\left(x^4-2x\right)^2\right)\left(x-1\right)^3-\frac{d}{dx}\left(\left(x-1\right)^3\right)\left(x^4-2x\right)^2}{\left(\left(x-1\right)^3\right)^2}=


=2(x42x)(4x32)(x1)33(x1)2(x42x)2((x1)3)2=(x42x)(5x48x3+2x+4)(x1)4=\frac{2\left(x^4-2x\right)\left(4x^3-2\right)\left(x-1\right)^3-3\left(x-1\right)^2\left(x^4-2x\right)^2}{\left(\left(x-1\right)^3\right)^2}=\frac{\left(x^4-2x\right)\left(5x^4-8x^3+2x+4\right)}{\left(x-1\right)^4}


9.


ddx((x2)2)=2x2ddx(x2)=2x212x2=1\frac{d}{dx}\left(\left(\sqrt{x-2}\right)^2\right)=2\sqrt{x-2}\frac{d}{dx}\left(\sqrt{x-2}\right)=2\sqrt{x-2}\frac{1}{2\sqrt{x-2}}=1


10.


ddx((x3+x2)2(x1)3)=ddx((x3+x2)2)(x1)3+ddx((x1)3)(x3+x2)2=\frac{d}{dx}\left(\left(x^3+x^2\right)^2\left(x-1\right)^3\right)=\frac{d}{dx}\left(\left(x^3+x^2\right)^2\right)\left(x-1\right)^3+\frac{d}{dx}\left(\left(x-1\right)^3\right)\left(x^3+x^2\right)^2=


=2(x3+x2)(3x2+2x)(x1)3+3(x1)2(x3+x2)2=2\left(x^3+x^2\right)\left(3x^2+2x\right)\left(x-1\right)^3+3\left(x-1\right)^2\left(x^3+x^2\right)^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS