z = β 4 x β 5 y + 8 x 2 100 + y 2 81 β©½ 1 1 + z x β² 2 + z y β² 2 = 1 + 4 2 + 5 2 = 42 S = β¬ x 2 100 + y 2 81 β©½ 1 42 d x d y = 42 S { x 2 100 + y 2 81 β©½ 1 } x 2 100 + y 2 81 β©½ 1 i s β β a n β β e l l i p s e β β w i t h β β a = 10 , b = 9 , h e n c e S { x 2 100 + y 2 81 β©½ 1 } = Ο a b = Ο β
10 β
9 = 90 Ο S = 90 Ο 42 z=-4x-5y+8\\\frac{x^2}{100}+\frac{y^2}{81}\leqslant 1\\\sqrt{1+z{'_x}^2+z{'_y}^2}=\sqrt{1+4^2+5^2}=\sqrt{42}\\S=\iint_{\frac{x^2}{100}+\frac{y^2}{81}\leqslant 1}{\sqrt{42}dxdy}=\sqrt{42}S\left\{ \frac{x^2}{100}+\frac{y^2}{81}\leqslant 1 \right\} \\\frac{x^2}{100}+\frac{y^2}{81}\leqslant 1 is\,\,an\,\,ellipse\,\,with\,\,a=10,b=9, hence\\S\left\{ \frac{x^2}{100}+\frac{y^2}{81}\leqslant 1 \right\} =\pi ab=\pi \cdot 10\cdot 9=90\pi \\S=90\pi \sqrt{42} z = β 4 x β 5 y + 8 100 x 2 β + 81 y 2 β β©½ 1 1 + z x β² β 2 + z y β² β 2 β = 1 + 4 2 + 5 2 β = 42 β S = β¬ 100 x 2 β + 81 y 2 β β©½ 1 β 42 β d x d y = 42 β S { 100 x 2 β + 81 y 2 β β©½ 1 } 100 x 2 β + 81 y 2 β β©½ 1 i s an e ll i p se w i t h a = 10 , b = 9 , h e n ce S { 100 x 2 β + 81 y 2 β β©½ 1 } = Οab = Ο β
10 β
9 = 90 Ο S = 90 Ο 42 β
Comments