Question #317883

Find the surface area of that part of the plane 4π‘₯+5𝑦+𝑧=8

4x+5y+z=8 that lies inside the elliptic cylinder (x2/100) + (y2/81) =1



1
Expert's answer
2022-03-27T16:10:55-0400

z=βˆ’4xβˆ’5y+8x2100+y281β©½11+zxβ€²2+zyβ€²2=1+42+52=42S=∬x2100+y281β©½142dxdy=42S{x2100+y281β©½1}x2100+y281β©½1is  an  ellipse  with  a=10,b=9,henceS{x2100+y281β©½1}=Ο€ab=Ο€β‹…10β‹…9=90Ο€S=90Ο€42z=-4x-5y+8\\\frac{x^2}{100}+\frac{y^2}{81}\leqslant 1\\\sqrt{1+z{'_x}^2+z{'_y}^2}=\sqrt{1+4^2+5^2}=\sqrt{42}\\S=\iint_{\frac{x^2}{100}+\frac{y^2}{81}\leqslant 1}{\sqrt{42}dxdy}=\sqrt{42}S\left\{ \frac{x^2}{100}+\frac{y^2}{81}\leqslant 1 \right\} \\\frac{x^2}{100}+\frac{y^2}{81}\leqslant 1 is\,\,an\,\,ellipse\,\,with\,\,a=10,b=9, hence\\S\left\{ \frac{x^2}{100}+\frac{y^2}{81}\leqslant 1 \right\} =\pi ab=\pi \cdot 10\cdot 9=90\pi \\S=90\pi \sqrt{42}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS