Find the surface area of that part of the plane 4π₯+5π¦+π§=8
4x+5y+z=8 that lies inside the elliptic cylinder (x2/100) + (y2/81) =1
z=β4xβ5y+8x2100+y281β©½11+zxβ²2+zyβ²2=1+42+52=42S=β¬x2100+y281β©½142dxdy=42S{x2100+y281β©½1}x2100+y281β©½1isββanββellipseββwithββa=10,b=9,henceS{x2100+y281β©½1}=Οab=Οβ 10β 9=90ΟS=90Ο42z=-4x-5y+8\\\frac{x^2}{100}+\frac{y^2}{81}\leqslant 1\\\sqrt{1+z{'_x}^2+z{'_y}^2}=\sqrt{1+4^2+5^2}=\sqrt{42}\\S=\iint_{\frac{x^2}{100}+\frac{y^2}{81}\leqslant 1}{\sqrt{42}dxdy}=\sqrt{42}S\left\{ \frac{x^2}{100}+\frac{y^2}{81}\leqslant 1 \right\} \\\frac{x^2}{100}+\frac{y^2}{81}\leqslant 1 is\,\,an\,\,ellipse\,\,with\,\,a=10,b=9, hence\\S\left\{ \frac{x^2}{100}+\frac{y^2}{81}\leqslant 1 \right\} =\pi ab=\pi \cdot 10\cdot 9=90\pi \\S=90\pi \sqrt{42}z=β4xβ5y+8100x2β+81y2ββ©½11+zxβ²β2+zyβ²β2β=1+42+52β=42βS=β¬100x2β+81y2ββ©½1β42βdxdy=42βS{100x2β+81y2ββ©½1}100x2β+81y2ββ©½1isanellipsewitha=10,b=9,henceS{100x2β+81y2ββ©½1}=Οab=Οβ 10β 9=90ΟS=90Ο42β
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments