Answer to Question #317847 in Calculus for Segun

Question #317847

Given that y= acoskx + bsinkx, show that d²y/dx² + k²y =0

1
Expert's answer
2022-03-28T04:18:43-0400

y(x)=acos(kx)+bsin(kx)y(x)=acos(kx)+bsin(kx)

y(x)=a×ksinkx+b×kcos(kx)y'(x)=-a\times ksinkx+b\times kcos(kx)

y"(x)=a×k2×cos(kx)b×k2sin(kx)y"(x)=-a\times k^2\times cos(kx)-b\times k^2sin(kx)


=k2(acos(kx)+bsin(kx))=-k^2(acos(kx)+bsin(kx))

From this its clear that,

y"(x)=k2×y(x)y"(x)=-k^2\times y(x)

y"+k2y=0


Hence,

d2ydx2+k2y=0\frac{d^2y}{dx^2}+k^2y=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment