Given that y= acoskx + bsinkx, show that d²y/dx² + k²y =0
y(x)=acos(kx)+bsin(kx)y(x)=acos(kx)+bsin(kx)y(x)=acos(kx)+bsin(kx)
y′(x)=−a×ksinkx+b×kcos(kx)y'(x)=-a\times ksinkx+b\times kcos(kx)y′(x)=−a×ksinkx+b×kcos(kx)
y"(x)=−a×k2×cos(kx)−b×k2sin(kx)y"(x)=-a\times k^2\times cos(kx)-b\times k^2sin(kx)y"(x)=−a×k2×cos(kx)−b×k2sin(kx)
From this its clear that,
y"(x)=−k2×y(x)y"(x)=-k^2\times y(x)y"(x)=−k2×y(x)
y"+k2y=0
Hence,
d2ydx2+k2y=0\frac{d^2y}{dx^2}+k^2y=0dx2d2y+k2y=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment