A curve has an x-intercept at * = 1. At its y-intercept of y = -3, the curve's tangent line
has a slope of -1. Find the equation of this curve in the form y
= ax2 + hx+c
y=ax2+bx+cy=0,x=1⇒a+b+c=0x=0,y=−3⇒c=−3y′(0)=b=−1{a+b+c=0c=−3b=−1⇒a=4,b=−1,c=−3y=4x2−x−3y=ax^2+bx+c\\y=0,x=1\Rightarrow a+b+c=0\\x=0,y=-3\Rightarrow c=-3\\y'\left( 0 \right) =b=-1\\\left\{ \begin{array}{c} a+b+c=0\\ c=-3\\ b=-1\\\end{array} \right. \Rightarrow a=4,b=-1,c=-3\\y=4x^2-x-3y=ax2+bx+cy=0,x=1⇒a+b+c=0x=0,y=−3⇒c=−3y′(0)=b=−1⎩⎨⎧a+b+c=0c=−3b=−1⇒a=4,b=−1,c=−3y=4x2−x−3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments