Determine whether or not the following are continuous functions.
1. Ζ(π₯)=5π₯+3 2. Ζ(π₯)=β4π₯+2
3. Ζ(π₯)=2π₯2 +π₯β3
4. Ζ(π₯)={2π₯β3 iΖ π₯β₯2 β2π₯ + 2 iΖ π₯ < 2
5. Ζ(π₯)={|π₯+2|iΖπ₯Gβ2 4 iΖ π₯ = β2
1. "\u0192(\ud835\udc65)=5\ud835\udc65+3"
Consider the difference
"f(x+\\Delta x)-f(x)=5(x+\\Delta x)+3 - (5x+3)=5\\Delta x\\to 0" as "\\Delta x\\to0", for any "x\\in\\mathbb{R}". Therefore, this function is continuous for any "x\\in\\mathbb{R}".
2. "\u0192(\ud835\udc65)=\u22124\ud835\udc65+2"
Consider the difference
"f(x+\\Delta x)-f(x)=-4(x+\\Delta x)+2 - (\u22124\ud835\udc65+2)=-4\\Delta x\\to 0" as "\\Delta x\\to0", for any "x\\in\\mathbb{R}". Therefore, this function is continuous for any "x\\in\\mathbb{R}".
3. "\u0192(\ud835\udc65)=2\ud835\udc65^2 +\ud835\udc65\u22123"
Consider the difference
"f(x+\\Delta x)-f(x)=2(x+\\Delta x)^2 +(x+\\Delta x)\u22123 - (2\ud835\udc65^2 +\ud835\udc65\u22123)"
"=4x\\Delta x+2(\\Delta x)^2\\to 0" as "\\Delta x\\to0", for any "x\\in\\mathbb{R}".
Therefore, this function is continuous for any "x\\in\\mathbb{R}".
4. "\u0192(\ud835\udc65)=\\left\\{\n\\begin{matrix}\n2\ud835\udc65\u22123 & \\rm{if}\\, \ud835\udc65\u22652 \\\\\n\u22122\ud835\udc65 + 2 & \\rm{if}\\, \ud835\udc65 < 2\n\\end{matrix}\n\\right."
For any "x<2" consider the difference
"f(x+\\Delta x)-f(x)=-2(x+\\Delta x)+2 - (\u22122\ud835\udc65 + 2)=-2\\Delta x\\to 0"
as "\\Delta x\\to0". Therefore, this function is continuous for any "x<2".
For any "x>2" consider the difference
"f(x+\\Delta x)-f(x)=2(x+\\Delta x)+2 - (2\ud835\udc65 + 2)=2\\Delta x\\to 0"
as "\\Delta x\\to0". Therefore, this function is continuous for any "x>2".
For "x=2" consider one-sided limits:
"\\lim\\limits_{\\Delta\\to+0}f(2+\\Delta x)=\\lim\\limits_{\\Delta\\to+0}(2(2+\\Delta x)-3)=1"
"\\lim\\limits_{\\Delta\\to-0}f(2+\\Delta x)=\\lim\\limits_{\\Delta\\to+0}(-2(2+\\Delta x)+2)=-2"
The one-sided limits are not equal, therefore, the function is not continuous at "x=2".
5. "\u0192(\ud835\udc65)=\\left\\{\n\\begin{matrix}\n|\ud835\udc65+2| & \\rm{if}\\, \ud835\udc65\\ne -2 \\\\\n4 & \\rm{if}\\, \ud835\udc65 = -2\n\\end{matrix}\\right."
For any "x>-2" consider the limit
"\\lim\\limits_{\\Delta\\to 0}f(x+\\Delta x)=\\lim\\limits_{\\Delta\\to0}|x+\\Delta x+2|"
"=\\lim\\limits_{\\Delta\\to0}(x+\\Delta x+2)=x+2=f(x)"
Therefore, the function is continuous for any "x>-2".
For any "x<-2" consider the limit
"\\lim\\limits_{\\Delta\\to 0}f(x+\\Delta x)=\\lim\\limits_{\\Delta\\to0}|x+\\Delta x+2|"
"=\\lim\\limits_{\\Delta\\to0}(-x-\\Delta x-2)=-x-2=f(x)"
Therefore, the function is continuous for any "x<-2".
For "x=-2" consider one-sided limits:
"\\lim\\limits_{\\Delta\\to+0}f(-2+\\Delta x)=\\lim\\limits_{\\Delta\\to+0}|-2+\\Delta x+2|=0"
"\\lim\\limits_{\\Delta\\to-0}f(-2+\\Delta x)=\\lim\\limits_{\\Delta\\to-0}|-2+\\Delta x+2|=0"
They are not equal to "f(-2)=4". Therefore, the function is not continuous at "x=-2".
Comments
Leave a comment