Use the rules of differentiation to differentiate the following functions.
a. f(x)=2x²+6x
b.g(x)=7x⁴-3x²
c.y(x)=(4x)³- 18x²+6x
d.h(x)=(3x+4)²
e.h(x)=9x⅔+2/4√x
a. "f(x)=2x^2+6x"
here we apply the sum rule
"d\/dx(f(x)) =d\/dx(g(x))+d\/dx(h(x))"
let "g(x)= 2x^2"
"h(x)=6x"
"=d\/dx(2x^3)+d\/dx(6x)"
"=6x^2+6"
b. g(x)= "7x^4-3x^2"
here we apply the difference rule
"d\/dx(g(x)) =d\/dx(f(x))-d\/dx(h(x))"
let "f(x)= 7x^4"
"h(x)=3x^2"
"=d\/dx(7x^4)-d\/dx(3x^2)"
"=28x^3-6x"
c. "y(x)=(4x)^3-18x^2+6x"
we start by simplifying the equation
= "(4x)^3=64x^3"
the simplified equation will be
"64x^3-18x^2+6x"
here we apply the sum/ difference rule
"d\/dx(y(x)) =d\/dx(f(x)) -d\/dx(g(x))+d\/dx(h(x))"let "f(x)= 64x^3"
"g(x) = 18x^2"
"h(x)=6x"
"=d\/dx(y(x))=d\/dx(64x^3)-d\/dx(18x^2)+d\/dx(6x)"
"=192x^2-36x+6"
d. "h(x)=(3x+4)^2"
we apply the chain rule
"d\/dx[f(g(x)] =d\/d[g(x)][f(x)]*d\/dx(g(x))"
let f(x)= 2
"g(x)= 3x+4"
="2*(3x+4)*d\/dx(3x+4)"
= "2*(3x+4)*3"
="6(3x+4)"
= "18x+24"
e. "h(x)=9x"2/3+"2\/4\n\u200b\n \\sqrt{x}"
here we apply the sum rule.
d/dx(h(x))=d/dx(g(x))+d/dx(h(x))
="d\/dx(" 9x2/3)+"d\/dx" ("2\/4\n\u200b\n \\sqrt{x}")
= 6x -1/3-1/4x3/2
Comments
Leave a comment