a. f(x)=2x2+6x
here we apply the sum rule
d/dx(f(x))=d/dx(g(x))+d/dx(h(x))
let g(x)=2x2
h(x)=6x
=d/dx(2x3)+d/dx(6x)
=6x2+6
b. g(x)= 7x4−3x2
here we apply the difference rule
d/dx(g(x))=d/dx(f(x))−d/dx(h(x))
let f(x)=7x4
h(x)=3x2
=d/dx(7x4)−d/dx(3x2)
=28x3−6x
c. y(x)=(4x)3−18x2+6x
we start by simplifying the equation
= (4x)3=64x3
the simplified equation will be
64x3−18x2+6x
here we apply the sum/ difference rule
d/dx(y(x))=d/dx(f(x))−d/dx(g(x))+d/dx(h(x)) let f(x)=64x3
g(x)=18x2
h(x)=6x
=d/dx(y(x))=d/dx(64x3)−d/dx(18x2)+d/dx(6x)
=192x2−36x+6
d. h(x)=(3x+4)2
we apply the chain rule
d/dx[f(g(x)]=d/d[g(x)][f(x)]∗d/dx(g(x))
let f(x)= 2
g(x)=3x+4
=2∗(3x+4)∗d/dx(3x+4)
= 2∗(3x+4)∗3
=6(3x+4)
= 18x+24
e. h(x)=9x2/3+2/4x
here we apply the sum rule.
d/dx(h(x))=d/dx(g(x))+d/dx(h(x))
=d/dx( 9x2/3)+d/dx (2/4x)
= 6x -1/3-1/4x3/2
Comments