Question #305571

Use the rules of differentiation to differentiate the following functions.



a. f(x)=2x²+6x


b.g(x)=7x⁴-3x²


c.y(x)=(4x)³- 18x²+6x


d.h(x)=(3x+4)²


e.h(x)=9x⅔+2/4√x

1
Expert's answer
2022-03-07T05:58:01-0500

a. f(x)=2x2+6xf(x)=2x^2+6x

here we apply the sum rule

d/dx(f(x))=d/dx(g(x))+d/dx(h(x))d/dx(f(x)) =d/dx(g(x))+d/dx(h(x))

let g(x)=2x2g(x)= 2x^2

h(x)=6xh(x)=6x

=d/dx(2x3)+d/dx(6x)=d/dx(2x^3)+d/dx(6x)

=6x2+6=6x^2+6

b. g(x)= 7x43x27x^4-3x^2

here we apply the difference rule

d/dx(g(x))=d/dx(f(x))d/dx(h(x))d/dx(g(x)) =d/dx(f(x))-d/dx(h(x))

let f(x)=7x4f(x)= 7x^4

h(x)=3x2h(x)=3x^2

=d/dx(7x4)d/dx(3x2)=d/dx(7x^4)-d/dx(3x^2)

=28x36x=28x^3-6x

c. y(x)=(4x)318x2+6xy(x)=(4x)^3-18x^2+6x

we start by simplifying the equation

= (4x)3=64x3(4x)^3=64x^3

the simplified equation will be

64x318x2+6x64x^3-18x^2+6x

here we apply the sum/ difference rule

d/dx(y(x))=d/dx(f(x))d/dx(g(x))+d/dx(h(x))d/dx(y(x)) =d/dx(f(x)) -d/dx(g(x))+d/dx(h(x))

let f(x)=64x3f(x)= 64x^3

g(x)=18x2g(x) = 18x^2

h(x)=6xh(x)=6x

=d/dx(y(x))=d/dx(64x3)d/dx(18x2)+d/dx(6x)=d/dx(y(x))=d/dx(64x^3)-d/dx(18x^2)+d/dx(6x)

=192x236x+6=192x^2-36x+6

d. h(x)=(3x+4)2h(x)=(3x+4)^2

we apply the chain rule

d/dx[f(g(x)]=d/d[g(x)][f(x)]d/dx(g(x))d/dx[f(g(x)] =d/d[g(x)][f(x)]*d/dx(g(x))

let f(x)= 2

g(x)=3x+4g(x)= 3x+4

=2(3x+4)d/dx(3x+4)2*(3x+4)*d/dx(3x+4)

= 2(3x+4)32*(3x+4)*3

=6(3x+4)6(3x+4)

= 18x+2418x+24

e. h(x)=9xh(x)=9x2/3+2/4x2/4 ​ \sqrt{x}

here we apply the sum rule.

d/dx(h(x))=d/dx(g(x))+d/dx(h(x))

=d/dx(d/dx( 9x2/3)+d/dxd/dx (2/4x2/4 ​ \sqrt{x})

= 6x -1/3-1/4x3/2

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS