a. f ( x ) = 2 x 2 + 6 x f(x)=2x^2+6x f ( x ) = 2 x 2 + 6 x
here we apply the sum rule
d / d x ( f ( x ) ) = d / d x ( g ( x ) ) + d / d x ( h ( x ) ) d/dx(f(x)) =d/dx(g(x))+d/dx(h(x)) d / d x ( f ( x )) = d / d x ( g ( x )) + d / d x ( h ( x ))
let g ( x ) = 2 x 2 g(x)= 2x^2 g ( x ) = 2 x 2
h ( x ) = 6 x h(x)=6x h ( x ) = 6 x
= d / d x ( 2 x 3 ) + d / d x ( 6 x ) =d/dx(2x^3)+d/dx(6x) = d / d x ( 2 x 3 ) + d / d x ( 6 x )
= 6 x 2 + 6 =6x^2+6 = 6 x 2 + 6
b. g(x)= 7 x 4 − 3 x 2 7x^4-3x^2 7 x 4 − 3 x 2
here we apply the difference rule
d / d x ( g ( x ) ) = d / d x ( f ( x ) ) − d / d x ( h ( x ) ) d/dx(g(x)) =d/dx(f(x))-d/dx(h(x)) d / d x ( g ( x )) = d / d x ( f ( x )) − d / d x ( h ( x ))
let f ( x ) = 7 x 4 f(x)= 7x^4 f ( x ) = 7 x 4
h ( x ) = 3 x 2 h(x)=3x^2 h ( x ) = 3 x 2
= d / d x ( 7 x 4 ) − d / d x ( 3 x 2 ) =d/dx(7x^4)-d/dx(3x^2) = d / d x ( 7 x 4 ) − d / d x ( 3 x 2 )
= 28 x 3 − 6 x =28x^3-6x = 28 x 3 − 6 x
c. y ( x ) = ( 4 x ) 3 − 18 x 2 + 6 x y(x)=(4x)^3-18x^2+6x y ( x ) = ( 4 x ) 3 − 18 x 2 + 6 x
we start by simplifying the equation
= ( 4 x ) 3 = 64 x 3 (4x)^3=64x^3 ( 4 x ) 3 = 64 x 3
the simplified equation will be
64 x 3 − 18 x 2 + 6 x 64x^3-18x^2+6x 64 x 3 − 18 x 2 + 6 x
here we apply the sum/ difference rule
d / d x ( y ( x ) ) = d / d x ( f ( x ) ) − d / d x ( g ( x ) ) + d / d x ( h ( x ) ) d/dx(y(x)) =d/dx(f(x)) -d/dx(g(x))+d/dx(h(x)) d / d x ( y ( x )) = d / d x ( f ( x )) − d / d x ( g ( x )) + d / d x ( h ( x )) let f ( x ) = 64 x 3 f(x)= 64x^3 f ( x ) = 64 x 3
g ( x ) = 18 x 2 g(x) = 18x^2 g ( x ) = 18 x 2
h ( x ) = 6 x h(x)=6x h ( x ) = 6 x
= d / d x ( y ( x ) ) = d / d x ( 64 x 3 ) − d / d x ( 18 x 2 ) + d / d x ( 6 x ) =d/dx(y(x))=d/dx(64x^3)-d/dx(18x^2)+d/dx(6x) = d / d x ( y ( x )) = d / d x ( 64 x 3 ) − d / d x ( 18 x 2 ) + d / d x ( 6 x )
= 192 x 2 − 36 x + 6 =192x^2-36x+6 = 192 x 2 − 36 x + 6
d. h ( x ) = ( 3 x + 4 ) 2 h(x)=(3x+4)^2 h ( x ) = ( 3 x + 4 ) 2
we apply the chain rule
d / d x [ f ( g ( x ) ] = d / d [ g ( x ) ] [ f ( x ) ] ∗ d / d x ( g ( x ) ) d/dx[f(g(x)] =d/d[g(x)][f(x)]*d/dx(g(x)) d / d x [ f ( g ( x )] = d / d [ g ( x )] [ f ( x )] ∗ d / d x ( g ( x ))
let f(x)= 2
g ( x ) = 3 x + 4 g(x)= 3x+4 g ( x ) = 3 x + 4
=2 ∗ ( 3 x + 4 ) ∗ d / d x ( 3 x + 4 ) 2*(3x+4)*d/dx(3x+4) 2 ∗ ( 3 x + 4 ) ∗ d / d x ( 3 x + 4 )
= 2 ∗ ( 3 x + 4 ) ∗ 3 2*(3x+4)*3 2 ∗ ( 3 x + 4 ) ∗ 3
=6 ( 3 x + 4 ) 6(3x+4) 6 ( 3 x + 4 )
= 18 x + 24 18x+24 18 x + 24
e. h ( x ) = 9 x h(x)=9x h ( x ) = 9 x 2/3 +2 / 4 x 2/4
\sqrt{x} 2/4 x
here we apply the sum rule.
d /dx (h(x ))=d /dx (g (x ))+d /dx (h (x ))
=d / d x ( d/dx( d / d x ( 9x 2/3 )+d / d x d/dx d / d x (2 / 4 x 2/4
\sqrt{x} 2/4 x )
= 6x -1/3 -1/4x3/2
Comments