Determine whether if lim f(c) = f(c)
x + c
1. f(x) = x+2; c = -1
2. f(x) = x-2; c = 0
3. (at c = -1 )
f(x) = {x ² - 1 if x = < -1}
f(x) = { (x - 1) ² - 4 if x = ≥ - 1}
4. (at c = 1 )
f(x) = {x³ - 1 if x = < 1}
f(x) = { x² +4 if x = ≥ 1}
1, The function "f(x)=x+2" is continuous on "\\R" as a polynomial.
Therefore
Then
2, The function "f(x)=x-2" is continuous on "\\R" as a polynomial.
Therefore
Then
3.
"\\lim\\limits_{x\\to -1^+}f(x)=(-1-1)^2-4=0"
Since
then "\\lim\\limits_{x\\to -1}f(x)" exists, and "\\lim\\limits_{x\\to -1}f(x)=0."
4.
"\\lim\\limits_{x\\to 1^+}f(x)=(1)^2+4=5"
Since
then "\\lim\\limits_{x\\to 1}f(x)" does not exist.
Comments
Leave a comment