Obtain a partial Differential equation by eliminating arbitrary constants from z=(x-α) ^2 +(y-β) ^2?
A) 2z=p^2+q^2
B) 4z=p^2+q^2
C) 4z=p+q
D) z^2=p^2+q^2
z=(x−α)2+(y−β)2 ...(i)⇒∂z∂x=2(x−α)⇒p=2(x−α)⇒(x−α)=p2 ...(ii)z=(x-α) ^2 +(y-β) ^2\ ...(i) \\ \Rightarrow \dfrac{\partial z}{\partial x}=2(x-\alpha) \\ \Rightarrow p=2(x-\alpha) \\ \Rightarrow (x-\alpha)=\dfrac p2\ ...(ii)z=(x−α)2+(y−β)2 ...(i)⇒∂x∂z=2(x−α)⇒p=2(x−α)⇒(x−α)=2p ...(ii)
Next, ∂z∂y=2(y−β)\dfrac{\partial z}{\partial y}=2(y-\beta)∂y∂z=2(y−β)
⇒q=2(y−β)⇒(y−β)=q2 ...(iii)\Rightarrow q=2(y-\beta) \\ \Rightarrow (y-\beta)=\dfrac q2 \ ...(iii)⇒q=2(y−β)⇒(y−β)=2q ...(iii)
Put (ii) and (iii) in (i).
z=(p2)2+(q2)2⇒4z=p2+q2z=(\dfrac p2) ^2 +(\dfrac q2) ^2 \\ \Rightarrow 4z=p^2+q^2z=(2p)2+(2q)2⇒4z=p2+q2
Option B is correct.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments