Obtain a partial Differential equation by eliminating arbitrary constants from z=(x-α) ^2 +(y-β) ^2?
A) 2z=p^2+q^2
B) 4z=p^2+q^2
C) 4z=p+q
D) z^2=p^2+q^2
"z=(x-\u03b1) ^2 +(y-\u03b2) ^2\\ ...(i)\n\\\\ \\Rightarrow \\dfrac{\\partial z}{\\partial x}=2(x-\\alpha)\n\\\\ \\Rightarrow p=2(x-\\alpha)\n\\\\ \\Rightarrow (x-\\alpha)=\\dfrac p2\\ ...(ii)"
Next, "\\dfrac{\\partial z}{\\partial y}=2(y-\\beta)"
"\\Rightarrow q=2(y-\\beta)\n\\\\ \\Rightarrow (y-\\beta)=\\dfrac q2 \\ ...(iii)"
Put (ii) and (iii) in (i).
"z=(\\dfrac p2) ^2 +(\\dfrac q2) ^2\n\\\\ \\Rightarrow 4z=p^2+q^2"
Option B is correct.
Comments
Leave a comment