find the volume of the solid generated by revolving region bounded by the curves y = x, y = 2 - x, y = 0, about y = -1
"x=0, 2-x=0=>x=2"
"V=\\pi\\displaystyle\\int_{0}^{1}((x+1)^2-(0+1)^2)dx"
"+\\pi\\displaystyle\\int_{1}^{2}((2-x+1)^2-(0+1)^2)dx"
"=\\pi[\\dfrac{x^3}{3}+x^2]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}+\\pi[8x-3x^2+\\dfrac{x^3}{3}]\\begin{matrix}\n 2 \\\\\n 1\n\\end{matrix}"
"=\\pi(\\dfrac{1}{3}+1+16-12+\\dfrac{8}{3}-8+3-\\dfrac{1}{3})"
"=\\dfrac{8\\pi}{3}({units}^3)"
Comments
Leave a comment