Question #291521

The perimeter of a triangle is 60cm. Find the length of the sides of the triangle which gives a maximum area.


1
Expert's answer
2022-01-30T16:20:33-0500

Let x, y, z be the sides of a triangle.

Then, the perimeter of the triangle is;

p(x,y,z)=x+y+z\displaystyle p(x,y,z)=x+y+z

Also, using Heron's formula, the area of the triangle is;

A(x,y,z)=2x2y2+2x2z2+2y2z2x4y4z44\displaystyle A(x,y,z)=\frac{\sqrt{2x^2y^2+2x^2z^2+2y^2z^2-x^4-y^4-z^4}}{4}


Now, from the question, P(x,y,z)=60\displaystyle P(x,y,z)=60. Thus, we are to;


maximize: A(x,y,z)=2x2y2+2x2z2+2y2z2x4y4z44\displaystyle A(x,y,z)=\frac{\sqrt{2x^2y^2+2x^2z^2+2y^2z^2-x^4-y^4-z^4}}{4}

subject to: x+y+z60=0\displaystyle x+y+z-60=0


Using Lagrange's method;


(2x2y2+2x2z2+2y2z2x4y4z44)=λ(x+y+z60)4xy2+4xz24x382x2y2+2x2z2+2y2z2x4y4z4=λ4yx2+4yz24y382x2y2+2x2z2+2y2z2x4y4z4=λ4zx2+4zy24z382x2y2+2x2z2+2y2z2x4y4z4=λThus, we need to solve the following equations:4xy2+4xz24x3=λ82x2y2+2x2z2+2y2z2x4y4z4 (i)4yx2+4yz24y3=λ82x2y2+2x2z2+2y2z2x4y4z4 (ii)4zx2+4zy24z3=λ82x2y2+2x2z2+2y2z2x4y4z4 (iii)x+y+z60=0(iv)\displaystyle \Rightarrow\nabla\left(\frac{\sqrt{2x^2y^2+2x^2z^2+2y^2z^2-x^4-y^4-z^4}}{4}\right)=\lambda\nabla(x+y+z-60)\\ \Rightarrow\quad\frac{4xy^2+4xz^2-4x^3}{8\sqrt{2x^2y^2+2x^2z^2+2y^2z^2-x^4-y^4-z^4}}=\lambda\\ \qquad \frac{4yx^2+4yz^2-4y^3}{8\sqrt{2x^2y^2+2x^2z^2+2y^2z^2-x^4-y^4-z^4}}=\lambda\\ \qquad \frac{4zx^2+4zy^2-4z^3}{8\sqrt{2x^2y^2+2x^2z^2+2y^2z^2-x^4-y^4-z^4}}=\lambda\\ \quad\\ \text{Thus, we need to solve the following equations:}\\ \quad\\ 4xy^2+4xz^2-4x^3=\lambda8\sqrt{2x^2y^2+2x^2z^2+2y^2z^2-x^4-y^4-z^4}\ \cdots\cdots\cdots\cdots\cdots\cdots(i)\\ 4yx^2+4yz^2-4y^3=\lambda8\sqrt{2x^2y^2+2x^2z^2+2y^2z^2-x^4-y^4-z^4}\ \cdots\cdots\cdots\cdots\cdots\cdots(ii)\\ 4zx^2+4zy^2-4z^3=\lambda8\sqrt{2x^2y^2+2x^2z^2+2y^2z^2-x^4-y^4-z^4}\ \cdots\cdots\cdots\cdots\cdots\cdots(iii)\\ x+y+z-60=0\cdots\cdots\cdots\cdots\cdots\cdots(iv)


substituting (i) into (ii) and (iii) yields;


4yx2+4yz24y3=4xy2+4xz24x34zx2+4zy24z3=4xy2+4xz24x3x+y+z60=0yx2+yz2y3xy2xz2+x3=0zx2+zy2z3xy2xz2+x3=0x+y+z60=0xy(xy)z2(xy)+(x3y3)=0xz(xz)y2(xz)+(x3z3)=0x+y+z60=0But (a3b3)=(ab)(a2+ab+b2)xy(xy)z2(xy)+(xy)(x2+xy+y2)=0xz(xz)y2(xz)+(xz)(x2+xz+z2)=0x+y+z60=0(xy)[xyz2+(x2+xy+y2)]=0(xz)[xzy2+(x2+xz+z2)]=0x+y+z60=0(xy)[x2+x(2y)+(y2z2)]=0(xz)[x2+x(2z)+(z2y2)]=0x+y+z60=0(xy)(x+yz)(x+y+z)=0(xz)(x+zy)(x+z+y)=0x+y+z60=0(yz)×z×(2y+x)=02y+z60=0, if x=y3z60=0, if y=zx=y=z=20\displaystyle 4yx^2+4yz^2-4y^3=4xy^2+4xz^2-4x^3\\ 4zx^2+4zy^2-4z^3=4xy^2+4xz^2-4x^3\\ x+y+z-60=0\\ \Rightarrow\\ yx^2+yz^2-y^3-xy^2-xz^2+x^3=0\\ zx^2+zy^2-z^3-xy^2-xz^2+x^3=0\\ x+y+z-60=0\\ \Rightarrow\\ xy(x-y)-z^2(x-y)+(x^3-y^3)=0\\ xz(x-z)-y^2(x-z)+(x^3-z^3)=0\\ x+y+z-60=0\\ \quad\\ \text{But }(a^3-b^3)=(a-b)(a^2+ab+b^2)\\ \Rightarrow\\ xy(x-y)-z^2(x-y)+(x-y)(x^2+xy+y^2)=0\\ xz(x-z)-y^2(x-z)+(x-z)(x^2+xz+z^2)=0\\ x+y+z-60=0\\ \Rightarrow\\ (x-y)[xy-z^2+(x^2+xy+y^2)]=0\\ (x-z)[xz-y^2+(x^2+xz+z^2)]=0\\ x+y+z-60=0\\ \Rightarrow\\ (x-y)[x^2+x(2y)+(y^2-z^2)]=0\\ (x-z)[x^2+x(2z)+(z^2-y^2)]=0\\ x+y+z-60=0\\ \Rightarrow\\ (x-y)(x+y-z)(x+y+z)=0\\ (x-z)(x+z-y)(x+z+y)=0\\ x+y+z-60=0\\ \Rightarrow\\ (y-z)\times z\times(2y+x)=0\\ 2y+z-60=0,\ \text{if }x=y\\ \Rightarrow\\ 3z-60=0,\ \text{if }y=z\\ \Rightarrow\\ x=y=z=20


Hence, the length of the sides of a triangle of perimeter 60cm which gives a maximum area are;

x=y=z=20 cm\displaystyle x=y=z=20\ cm, where x, y, z are the sides of the triangle.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS