Question #291463

For each problem, find the equation of the line tangent to the function at the given point. Your answer should be a slope-form.


1) y = 2x^2 + 16x + 32 at (-3, 2)

2) y = (x-2)^(1/3) at (3,1)

3) y = -x^3 + 3x^2 -4 at (3, -4)

4) y = -3/ x^2 - 4 at (-1, 1)



1
Expert's answer
2022-01-31T14:58:07-0500

1)


y=4x+16y'=4x+16

slope=m=y(3)=4(3)+16=4slope=m=y'(-3)=4(-3)+16=4

y2=4(x(3))y-2=4(x-(-3))

The equation of the line tangent to the function at (3,2)(-3, 2) is


y=4x+14y=4x+14

2)


y=13(x2)2/3y'=\dfrac{1}{3(x-2)^{2/3}}

slope=m=y(3)=13(32)2/3=13slope=m=y'(3)=\dfrac{1}{3(3-2)^{2/3}}=\dfrac{1}{3}

y1=13(x3)y-1=\dfrac{1}{3}(x-3)

The equation of the line tangent to the function at (3,1)(3, 1) is


y=13xy=\dfrac{1}{3}x

3)


y=3x2+6xy'=-3x^2+6x

slope=m=y(3)=3(3)2+6(3)=9slope=m=y'(3)=-3(3)^2+6(3)=-9

y(4)=9(x3)y-(-4)=-9(x-3)

The equation of the line tangent to the function at (3,4)(3, -4) is


y=9x+23y=-9x+23

4)


y=6x(x24)2y'=\dfrac{6x}{(x^2-4)^{2}}

slope=m=y(1)=6(1)((1)24)2=23slope=m=y'(-1)=\dfrac{6(-1)}{((-1)^2-4)^{2}}=-\dfrac{2}{3}

y1=23(x(1))y-1=-\dfrac{2}{3}(x-(-1))

The equation of the line tangent to the function at (1,1)(-1, 1) is


y=23x+13y=-\dfrac{2}{3}x+\dfrac{1}{3}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS