Question #291459

For each problem, find the derivative of the function at the given value. Some will require a graphing calculator.


1) y= -(-x+1)^(1/2) at x= -1

2) y= 2sin (2x) at x= - π/2

3) y= x^2 + 4x + 1 at x= -1

4) y= -ln (x) at x = 2




1
Expert's answer
2022-01-30T15:24:25-0500
  1. y=(x+1)12 at x=1y= -(-x+1)^{\frac{1}{2}} \text{ at } x= -1
ddx[1x]=ddx[1x]=12(1x)121ddx[1x]=ddx[1]ddx[x]21x=0121xy=121x at x=1y=122\frac{\mathrm{d}}{\mathrm{d} x}[-\sqrt{1-x}]\\ =-\frac{\mathrm{d}}{\mathrm{d} x}[\sqrt{1-x}]\\ =-\frac{1}{2}(1-x)^{\frac{1}{2}-1} \cdot \frac{\mathrm{d}}{\mathrm{d} x}[1-x]\\ =-\frac{\frac{\mathrm{d}}{\mathrm{d} x}[1]-\frac{\mathrm{d}}{\mathrm{d} x}[x]}{2 \sqrt{1-x}}\\ =-\frac{0-1}{2 \sqrt{1-x}}\\ y'=\frac{1}{2 \sqrt{1-x}}\\[4mm] \text{ at } x=-1\\ y'=\frac{1}{2 \sqrt{2}}

2. y=2sin(2x) at x=π/2y= 2sin (2x) \text{ at } x= - π/2


ddx[2sin(2x)]=2ddx[sin(2x)]=2cos(2x)ddx[2x]=2cos(2x)2ddx[x]=4cos(2x)1y=4cos(2x) at x=π/2y=4cos(π)y=4(1)y=4\begin{aligned} & \frac{\mathrm{d}}{\mathrm{d} x}[2 \sin (2 x)] \\ =& 2 \cdot \frac{\mathrm{d}}{\mathrm{d} x}[\sin (2 x)] \\ =& 2 \cos (2 x) \cdot \frac{\mathrm{d}}{\mathrm{d} x}[2 x] \\ =& 2 \cos (2 x) \cdot 2 \cdot \frac{\mathrm{d}}{\mathrm{d} x}[x] \\ =& 4 \cos (2 x) \cdot 1 \\ y'=& 4 \cos (2 x) \end{aligned} \\[4mm] \text{ at } x= -\pi/2\\ y' = 4cos(- \pi)\\ y'=4(-1)\\ y'=-4


3. y=x2+4x+1 at x=1y= x^2 + 4x + 1 \text{ at } x= -1


ddx[x2+4x+1]=ddx[x2]+4ddx[x]+ddx[1]=2x+41+0y=2x+4 at x=1y=2(1)+4y=2\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{2}+4 x+1\right]\\ =\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{2}\right]+4 \cdot \frac{\mathrm{d}}{\mathrm{d} x}[x]+\frac{\mathrm{d}}{\mathrm{d} x}[1]\\ =2 x+4 \cdot 1+0\\ y'=2 x+4 \\[4mm] \text{ at } x=-1\\ y' = 2(-1)+4\\ y' = 2

4. y=ln(x) at x=2y= -ln (x) \text{ at } x = 2


ddx[ln(x)]=ddx[ln(x)]y=1xat x=2y=12\frac{\mathrm{d}}{\mathrm{d} x}[-\ln (x)]\\ =-\frac{\mathrm{d}}{\mathrm{d} x}[\ln (x)]\\ y'=-\frac{1}{x}\\[4mm] \text{at } x=2\\ y' = -\frac{1}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS