The Maclaurin series for sinx is
sinx=x−3!x3+5!x5−7!x7+... Then
xcosecx=sinxx=x−3!x3+5!x5−7!x7+...x
=1−(3!x2−5!x4+7!x6+...)1 The Maclaurin series for 1−y1 is
1−y1=1+y+y2+y3+...,−1<y<1 Then
1−(3!x2−5!x4+7!x6+...)1=1+(3!x2−5!x4+7!x6+...)
+(3!x2−5!x4+7!x6+...)2
+(3!x2−5!x4+7!x6+...)3+...
=1+3!x2−5!x4+3!3!x4+7!x6−3!5!2x6+3!3!3!x6+...
=1+6x2+3607x4+... Therefore
xcosecx=1+6x2+3607x4+...
Comments