Question #291195

prove that xcosecx=1+(x)^2/6+(7/360)*x^4


1
Expert's answer
2022-01-28T03:44:53-0500

The Maclaurin series for sinx\sin x is


sinx=xx33!+x55!x77!+...\sin x=x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+...

Then


xcosecx=xsinx=xxx33!+x55!x77!+...x\cosec x=\dfrac{x}{\sin x}=\dfrac{x}{x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+...}

=11(x23!x45!+x67!+...)=\dfrac{1}{1-(\dfrac{x^2}{3!}-\dfrac{x^4}{5!}+\dfrac{x^6}{7!}+...)}

The Maclaurin series for 11y\dfrac{1}{1-y} is


11y=1+y+y2+y3+...,1<y<1\dfrac{1}{1-y}=1+y+y^2+y^3+..., -1<y<1

Then


11(x23!x45!+x67!+...)\dfrac{1}{1-(\dfrac{x^2}{3!}-\dfrac{x^4}{5!}+\dfrac{x^6}{7!}+...)}=1+(x23!x45!+x67!+...)=1+(\dfrac{x^2}{3!}-\dfrac{x^4}{5!}+\dfrac{x^6}{7!}+...)

+(x23!x45!+x67!+...)2+(\dfrac{x^2}{3!}-\dfrac{x^4}{5!}+\dfrac{x^6}{7!}+...)^2

+(x23!x45!+x67!+...)3+...+(\dfrac{x^2}{3!}-\dfrac{x^4}{5!}+\dfrac{x^6}{7!}+...)^3+...

=1+x23!x45!+x43!3!+x67!2x63!5!+x63!3!3!+...=1+\dfrac{x^2}{3!}-\dfrac{x^4}{5!}+\dfrac{x^4}{3!3!}+\dfrac{x^6}{7!}-\dfrac{2x^6}{3!5!}+\dfrac{x^6}{3!3!3!}+...

=1+x26+7x4360+...=1+\dfrac{x^2}{6}+\dfrac{7x^4}{360}+...

Therefore


xcosecx=1+x26+7x4360+...x\cosec x=1+\dfrac{x^2}{6}+\dfrac{7x^4}{360}+...


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS