prove that xcosecx=1+(x)^2/6+(7/360)*x^4
The Maclaurin series for "\\sin x" is
Then
"=\\dfrac{1}{1-(\\dfrac{x^2}{3!}-\\dfrac{x^4}{5!}+\\dfrac{x^6}{7!}+...)}"
The Maclaurin series for "\\dfrac{1}{1-y}" is
Then
"+(\\dfrac{x^2}{3!}-\\dfrac{x^4}{5!}+\\dfrac{x^6}{7!}+...)^2"
"+(\\dfrac{x^2}{3!}-\\dfrac{x^4}{5!}+\\dfrac{x^6}{7!}+...)^3+..."
"=1+\\dfrac{x^2}{3!}-\\dfrac{x^4}{5!}+\\dfrac{x^4}{3!3!}+\\dfrac{x^6}{7!}-\\dfrac{2x^6}{3!5!}+\\dfrac{x^6}{3!3!3!}+..."
"=1+\\dfrac{x^2}{6}+\\dfrac{7x^4}{360}+..."
Therefore
Comments
Leave a comment