1) We calculate the roots:
x3−x=0,x(x2−1)=0,x=0orx=1orx=−1.
2) Next, we shall determine maxima and minima:
(x3−x)′=3x2−1,3x2−1=0,x=±31.
At x=−31 the function (x3−x)′ changes sign from + to -, so it is the point of maximum. Another point is the point of minimum.
At x=−31 the function x3−x obtains value of 332, at x=+31 the function −332.
3) Next, we'll determine if the function is odd or even.
f(x)=x3−x,f(−x)=(−x)3−(−x)=−x3+x=−f(x), so the function is odd.
Comments