1) We calculate the roots:
x 3 − x = 0 , x ( x 2 − 1 ) = 0 , x = 0 or x = 1 or x = − 1. x^3 -x = 0, \;\; x(x^2-1) = 0, \\
x = 0 \;\;\text{or} \;\; x = 1 \;\;\text{or} \;\; x = -1 . x 3 − x = 0 , x ( x 2 − 1 ) = 0 , x = 0 or x = 1 or x = − 1.
2) Next, we shall determine maxima and minima:
( x 3 − x ) ′ = 3 x 2 − 1 , 3 x 2 − 1 = 0 , x = ± 1 3 . (x^3-x)' = 3x^2 - 1,\\
3x^2 - 1 = 0,\\
x = \pm \dfrac{1}{\sqrt{3}}. ( x 3 − x ) ′ = 3 x 2 − 1 , 3 x 2 − 1 = 0 , x = ± 3 1 .
At x = − 1 3 x = -\dfrac{1}{\sqrt{3}} x = − 3 1 the function ( x 3 − x ) ′ (x^3-x)' ( x 3 − x ) ′ changes sign from + to -, so it is the point of maximum. Another point is the point of minimum.
At x = − 1 3 x = -\dfrac{1}{\sqrt{3}} x = − 3 1 the function x 3 − x x^3-x x 3 − x obtains value of 2 3 3 , \dfrac{2}{3\sqrt{3}}, 3 3 2 , at x = + 1 3 x = +\dfrac{1}{\sqrt{3}} x = + 3 1 the function − 2 3 3 . -\dfrac{2}{3\sqrt{3}}. − 3 3 2 .
3) Next, we'll determine if the function is odd or even.
f ( x ) = x 3 − x , f ( − x ) = ( − x ) 3 − ( − x ) = − x 3 + x = − f ( x ) , f(x) = x^3 - x, \\ f(-x) = (-x)^3 - (-x) = -x^3 + x = -f(x), f ( x ) = x 3 − x , f ( − x ) = ( − x ) 3 − ( − x ) = − x 3 + x = − f ( x ) , so the function is odd.
Comments