Question #290749

Trace the curve y=x³-x

1
Expert's answer
2022-02-01T12:18:52-0500

1) We calculate the roots:

x3x=0,    x(x21)=0,x=0    or    x=1    or    x=1.x^3 -x = 0, \;\; x(x^2-1) = 0, \\ x = 0 \;\;\text{or} \;\; x = 1 \;\;\text{or} \;\; x = -1 .

2) Next, we shall determine maxima and minima:

(x3x)=3x21,3x21=0,x=±13.(x^3-x)' = 3x^2 - 1,\\ 3x^2 - 1 = 0,\\ x = \pm \dfrac{1}{\sqrt{3}}.

At x=13x = -\dfrac{1}{\sqrt{3}} the function (x3x)(x^3-x)' changes sign from + to -, so it is the point of maximum. Another point is the point of minimum.

At x=13x = -\dfrac{1}{\sqrt{3}} the function x3xx^3-x obtains value of 233,\dfrac{2}{3\sqrt{3}}, at x=+13x = +\dfrac{1}{\sqrt{3}} the function 233.-\dfrac{2}{3\sqrt{3}}.

3) Next, we'll determine if the function is odd or even.

f(x)=x3x,f(x)=(x)3(x)=x3+x=f(x),f(x) = x^3 - x, \\ f(-x) = (-x)^3 - (-x) = -x^3 + x = -f(x), so the function is odd.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS