We have that;
V=∫abA(y) dy, where A(y)=π((outer radius)2−(inner radius)2)
Now,
y=2x−1⇒x=4y2+1 and y=x−1⇒x=y+1
So,
4y2+1=y+1⇒4y2−y=0⇒y2−4y=0⇒y(y−4)=0⇒y=0,4
Hence, the first ring will occur at y=0 and the final ring will occur at y=4 and so these will be our limits of integration.
Next,
outer radius =y+1+1=y+2, and inner radius =4y2+1+1=4y2+2
Also, the cross-sectional area is;
A(y)=π((y+2)2−(4y2+2)2)=π(4y−16y4)
Thus, the volume is;
V=∫abA(y) dy=π∫04(4y−16y4) dy=π[2y2−80y5]04=596π
Comments