Determine the volume of the solid/ring obtained by the region bounded by
π¦=2βπ₯β1and π¦=π₯β1 about line x= -1 using shell method
We have that;
"\\displaystyle\nV=\\int^b_aA(y)\\ dy, \\text{ where }A(y)=\\pi((\\text{outer radius})^2-(\\text{inner radius})^2)"
Now,
"\\displaystyle\ny=2\\sqrt{x-1}\\Rightarrow x=\\frac{y^2}{4}+1\\ \\text{and }y=x-1\\Rightarrow x=y+1\\\\"
So,
"\\displaystyle\n\\frac{y^2}{4}+1=y+1\\Rightarrow\\frac{y^2}{4}-y=0\\Rightarrow y^2-4y=0\\Rightarrow y(y-4)=0\\Rightarrow y=0,4"
Hence, the first ring will occur at "\\displaystyle\ny=0" and the final ring will occur at "\\displaystyle\ny=4" and so these will be our limits of integration.
Next,
outer radius "\\displaystyle\n=y+1+1=y+2", and inner radius "\\displaystyle\n=\\frac{y^2}{4}+1+1=\\frac{y^2}{4}+2"
Also, the cross-sectional area is;
"\\displaystyle\nA(y)=\\pi((y+2)^2-(\\frac{y^2}{4}+2)^2)=\\pi\\left(4y-\\frac{y^4}{16}\\right)"
Thus, the volume is;
"\\displaystyle\nV=\\int^b_aA(y)\\ dy=\\pi\\int^4_0\\left(4y-\\frac{y^4}{16}\\right)\\ dy=\\pi\\left[2y^2-\\frac{y^5}{80}\\right]^4_0=\\frac{96\\pi}{5}"
Comments
Leave a comment