Question #289338

Determine the equations of the tangent and normal to:



1. 𝑇ℎ𝑒 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎 𝑦² = 6𝑥 − 3 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑙𝑖𝑛𝑒 𝑥 + 3𝑦 = 7



2. 𝑇ℎ𝑒 𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑥² + 2𝑦² = 9 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 4𝑥 − 𝑦 = 6



3. 𝑇ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 (𝑥 − 𝑦) ² + 4𝑥 − 1 = 0 𝑎𝑡 (1,0)



4. 𝑇ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 𝑦 = 2𝑥/𝑥+2 𝑎𝑡 𝑥 = 2




Locate the critical points and determine whether the given functions are either



maxima or minima using First Derivate Test and Second Derivative Test:



5. 𝑦 = 𝑥 ²(𝑥 − 2)²



6. 𝑦 = 𝑥(𝑥² − 6𝑥 − 15) + 50



7. 9a³y = x(4a − x)³

1
Expert's answer
2022-01-24T03:11:15-0500

1)We are given,y2=6x3From the given line x+3y=7We havey=x3+73Therefore, the Slope of this line is m=13.The Slope perpendicular to the Slope of the given line (m) is m=3.Next, differentiating y2=6x+3 implicitly wrt x:2yy=6y=3y=mtan,where mtan is the Slope of a tangent line to the curve y2=6x3.Next, m=mtan3=3yy=1Therefore y2=6x312=6x3x=23Therefore, the eqn. of the tangent passing through (23,1) isy1x23=m=3y=3x1Therefore, the eqn. of the tangent line isy=3x1Next,mnormal=1mtan=y3mnormal=m3=y3y=9So, y2=6x3(9)2=6x3x=14Therefore, the eqn. of the normal passing through (14,-9) isy+9x14=m=3y=3x51.2)We are given,x2+2y2=9From the given line 4xy=6We havey=4x6Therefore, the Slope of this line is m=4.The Slope perpendicular to the Slope of the given line (m) is m=14.Next, differentiating x2+2y2=9 implicitly wrt x:2x+4yy=0y=x2y=mtan,where mtan is the Slope of a tangent line to the curve x2+2y2=9.Next, m=mtan14=x2yy=2xTherefore x2+2y2=9x2+2(2x)2=9x=1,1At x=-1, y=-2At x=1, y=2The eqn. of the tangent passing through (1,2), isy+2x+1=m=14y=x494Also, the eqn. of the tangent passing through (1,2), isy2x1=m=14y=x4+94Therefore, the eqn. of the tangent lines arey=x494,  y=x4+94Next,mnormal=1mtan=2yxmnormal=m14=2yxy=x8So, x2+2y2=9x2+2(x8)2=9x=±9611At x=9611,y=322At x=9611,y=322The eqn. of the tangent passing through (9611,322), isy+322x9611=m=14y=x4611Also, the eqn. of the tangent passing through (9611,322), isy322x+9611=m=14y=x4+611y=x4611,  y=x4+6113)We are given (xy)2+4x1=0differentiating (xy)2+4x1=0 implicitly wrt x;2(xy)(y)+4=0y=2xyAt (1,0);mtan=y=210=2Thus, the equation of the tangent of the curve at (1, 0) is;y0x1=2=mtany=2(x1)Next, mtan×mnormal=1mnormal=12Thus, the equation of the normal of the curve at (1, 0) is;y0x1=12=mnormaly=x2+124)We are given y=2xx+2differentiating y=2xx+2 implicitly wrt x;y=4(x+2)2At x=2;mtan=y=14,y=1Thus, the equation of the tangent of the curve passing through (2, 1) is;y1x2=14=mtany=x4+12Next, mtan×mnormal=1mnormal=4Thus, the equation of the normal of the curve at (2, 1) is;y1x2=4=mnormaly=4x+95)y=x2(x2)2,differentiating yields:y=4x(x1)(x2)At critical point, y=0x=0,1,2 are the critical points.FIRST DERIVATIVE TEST:y(1)=24decreasing on (,0)y(12)=32increasing on (1,2)y(32)=32decreasing on (0,1)y(3)=24increasing on (2,)Since switching from decreasing to increasing and increasing to decreasing at a pointthe point is a local minimum point and local maximum point respectively, thusx = 1 is a local maximum point and x = 0, 2 are local minimum points.Thus, the function has local maximum at (1, 1) and local minimum at (2, 0),(0, 0).SECOND DERIVATIVE TEST:y=12x224x+8Plug in the critical numbers:y(0)=80 is a minimum pointy(1)=41 is a maximum pointy(2)=80 is a minimum pointThus, the function has local maximum at (1, 1) and local minimum at (2, 0),(0, 0).6)y=x36215x+50,differentiating yields:y=3(x5)(x+1)At critical point, y=0x=5,1 are the critical points.FIRST DERIVATIVE TEST:y(2)=21increasing on (,1)y(0)=15decreasing on (1,5)y(9)=120increasing on (5,)Since switching from decreasing to increasing and increasing to decreasing at a pointthe point is a local minimum point and local maximum point respectively, thusx = -1 is a local maximum point and x = 5 is a local minimum point.Thus, the function has local maximum at (-1, 58) and local minimum at (5, -50).SECOND DERIVATIVE TEST:y=6x12Plug in the critical numbers:y(1)=180 is a maximum pointy(5)=181 is a minimum pointThus, the function has local maximum at (-1, 58) and local minimum at (5, -50).7)y=x(4ax)39a3,differentiating yields:y=(4ax)2(4a4x)9a3At critical point, y=0x=a,4a are the critical points.Determine the 2nd derivative:9a3y=12(4ax)(2ax)x=4ay=0Check if Maxima or Minima.9a3y(4a)=12(4a4a)(2a4a)y=0 (inflection point)Hence, (4a, 0) is neither maximum nor minimumx=ay=3aCheck if Maxima or Minimay(a)=() (the curve is concave downward)Hence, (a, 0) is maximum.1)\qquad\\ \text{We are given,}\\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad y^2=6x-3\\ \text{From the given line } x+3y=7\\ \text{We have}\\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad y=-\frac{x}{3}+\frac{7}{3}\\ \text{Therefore, the Slope of this line is }m=-\frac{1}{3}.\\ \qquad \text{The Slope perpendicular to the Slope of the given line (m$\perp$) is }\mathbf{m_{\perp}}=3.\\ \text{Next, differentiating }y^2=6x+3 \text{ implicitly wrt } x:\\ \Rightarrow2yy\prime=6\\ \Rightarrow y\prime=\frac{3}{y}=\mathbf{m_{tan}}, \text{where $\mathbf{m_{tan}}$ is the Slope of a tangent line to the curve } y^2=6x-3.\\ \text{Next, } \mathbf{m_{\perp}}=\mathbf{m_{tan}}\\ \Rightarrow3=\frac{3}{y}\\ \Rightarrow y=1\\ \text{Therefore }y^2=6x-3\\ \Rightarrow 1^2=6x-3\Rightarrow x=\frac{2}{3}\\ \text{Therefore, the eqn. of the tangent passing through ($\frac{2}{3},1$) is}\\ \frac{y-1}{x-\frac{2}{3}}=m_\perp=3\\ \Rightarrow y=3x-1\\ \text{Therefore, the eqn. of the tangent line is}\\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad y=3x-1\\ \qquad\\ \text{Next,}\\ \mathbf{m_{normal}}=-\frac{1}{\mathbf{m_{tan}}}=-\frac{y}{3}\\ \mathbf{m_{normal}}=\mathbf{m_{\perp}}\\ \Rightarrow3=-\frac{y}{3}\Rightarrow y=-9\\ \text{So, }y^2=6x-3\Rightarrow(-9)^2=6x-3\Rightarrow x=14\\ \text{Therefore, the eqn. of the normal passing through (14,-9) is}\\ \frac{y+9}{x-14}=m_\perp=3\Rightarrow y=3x-51.\\ \quad\\ \quad\\ \quad\\ 2)\qquad\\\text{We are given,}\\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad x^2+2y^2=9\\ \text{From the given line } 4x-y=6\\ \text{We have}\\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad y=4x-6\\ \text{Therefore, the Slope of this line is }m=4.\\ \qquad \text{The Slope perpendicular to the Slope of the given line (m$\perp$) is }\mathbf{m_{\perp}}=-\frac{1}{4}.\\ \text{Next, differentiating }x^2+2y^2=9 \text{ implicitly wrt } x:\\ \Rightarrow 2x+4yy\prime=0\\ \Rightarrow y\prime=\frac{-x}{2y}=\mathbf{m_{tan}}, \text{where $\mathbf{m_{tan}}$ is the Slope of a tangent line to the curve } x^2+2y^2=9.\\ \text{Next, } \mathbf{m_{\perp}}=\mathbf{m_{tan}}\\ \Rightarrow -\frac{1}{4}=-\frac{x}{2y}\\ \Rightarrow y=2x\\ \text{Therefore }x^2+2y^2=9\\ \Rightarrow x^2+2(2x)^2=9\Rightarrow x=-1,1\\ \text{At x=-1, y=-2}\\ \text{At x=1, y=2}\\ \quad\text{The eqn. of the tangent passing through ($-1,-2$), is}\\ \frac{y+2}{x+1}=m_\perp=-\frac{1}{4}\\ \Rightarrow y=-\frac{x}{4}-\frac{9}{4}\\ \quad\text{Also, the eqn. of the tangent passing through ($1,2$), is}\\ \frac{y-2}{x-1}=m_\perp=-\frac{1}{4}\\ \Rightarrow y=-\frac{x}{4}+\frac{9}{4}\\ \text{Therefore, the eqn. of the tangent lines are}\\ \qquad\qquad\qquad\qquad\qquad\qquad y=-\frac{x}{4}-\frac{9}{4},\ \ y=-\frac{x}{4}+\frac{9}{4}\\ \qquad\\ \text{Next,}\\ \mathbf{m_{normal}}=-\frac{1}{\mathbf{m_{tan}}}=\frac{2y}{x}\\ \mathbf{m_{normal}}=\mathbf{m_{\perp}}\\ \Rightarrow -\frac{1}{4}=\frac{2y}{x}\Rightarrow y=-\frac{x}{8}\\ \text{So, }x^2+2y^2=9\Rightarrow x^2+2(-\frac{x}{8})^2=9\Rightarrow x=\pm\sqrt{\frac{96}{11}}\\ \text{At }x=\sqrt{\frac{96}{11}}, y=-\sqrt{\frac{3}{22}}\\ \text{At }x=-\sqrt{\frac{96}{11}}, y=\sqrt{\frac{3}{22}}\\ \quad\text{The eqn. of the tangent passing through ($\sqrt{\frac{96}{11}},-\sqrt{\frac{3}{22}}$), is}\\ \frac{y+\sqrt{\frac{3}{22}}}{x-\sqrt{\frac{96}{11}}}=m_\perp=-\frac{1}{4}\\ \Rightarrow y=-\frac{x}{4}-\sqrt{\frac{6}{11}}\\ \quad\text{Also, the eqn. of the tangent passing through ($-\sqrt{\frac{96}{11}},\sqrt{\frac{3}{22}}$), is}\\ \frac{y-\sqrt{\frac{3}{22}}}{x+\sqrt{\frac{96}{11}}}=m_\perp=-\frac{1}{4}\\ \Rightarrow y=-\frac{x}{4}+\sqrt{\frac{6}{11}}\\ \qquad\qquad\qquad\qquad\qquad\qquad y=-\frac{x}{4}-\sqrt{\frac{6}{11}},\ \ y=-\frac{x}{4}+\sqrt{\frac{6}{11}}\\ \quad\\ \quad\\ \quad\\ 3)\quad\\ \text{We are given }(x-y)^2+4x-1=0\\ \text{differentiating }(x-y)^2+4x-1=0 \text{ implicitly wrt x;}\\ \Rightarrow2(x-y)(-y\prime)+4=0\\ \Rightarrow y\prime=\frac{2}{x-y}\\ \text{At } (1,0);\\ m_{tan}=y\prime=\frac{2}{1-0}=2\\ \text{Thus, the equation of the tangent of the curve at (1, 0) is;}\\ \frac{y-0}{x-1}=2=m_{tan}\Rightarrow y=2(x-1)\\ \quad\\ \text{Next, }m_{tan}\times m_{normal}=-1\Rightarrow m_{normal}=\frac{-1}{2}\\ \text{Thus, the equation of the normal of the curve at (1, 0) is;}\\ \frac{y-0}{x-1}=\frac{-1}{2}=m_{normal}\Rightarrow y=-\frac{x}{2}+\frac{1}{2}\\ \quad\\ \quad\\ \quad\\ 4)\quad\\ \text{We are given }y=\frac{2x}{x+2}\\ \text{differentiating }y=\frac{2x}{x+2} \text{ implicitly wrt x;}\\ \Rightarrow y\prime=\frac{4}{(x+2)^2}\\ \text{At }x=2;\\ m_{tan}=y\prime=\frac{1}{4}, y=1\\ \text{Thus, the equation of the tangent of the curve passing through (2, 1) is;}\\ \frac{y-1}{x-2}=\frac{1}{4}=m_{tan}\Rightarrow y=\frac{x}{4}+\frac{1}{2}\\ \quad\\ \text{Next, }m_{tan}\times m_{normal}=-1\Rightarrow m_{normal}=-4\\ \text{Thus, the equation of the normal of the curve at (2, 1) is;}\\ \frac{y-1}{x-2}=-4=m_{normal}\Rightarrow y=-4x+9\\ \quad\\ \quad\\ \quad\\ 5)\\ y=x^2(x-2)^2, \text{differentiating yields:}\\y\prime=4x(x-1)(x-2)\\ \quad\text{At critical point, }y\prime=0 \Rightarrow x=0,1,2 \text{ are the critical points.}\\ \text{\textbf{FIRST DERIVATIVE TEST:}}\\ y\prime(-1)=-24\Rightarrow decreasing\ on\ (-\infty,0) \\ y\prime(\frac{1}{2})=\frac{3}{2}\Rightarrow increasing\ on\ (1,2)\\ y\prime(\frac{3}{2})=-\frac{3}{2}\Rightarrow decreasing\ on\ (0,1) \\ y\prime(3)=24\Rightarrow increasing\ on\ (2,\infty)\\ \text{Since switching from decreasing to increasing and increasing to decreasing at a point}\\ \Rightarrow \text{the point is a local minimum point and local maximum point respectively, thus}\\ \text{x = 1 is a local maximum point and x = 0, 2 are local minimum points.}\\ \text{Thus, the function has local maximum at (1, 1) and local minimum at (2, 0),(0, 0)}.\\ \quad\\ \text{\textbf{SECOND DERIVATIVE TEST:}}\\ y\prime\prime=12x^2-24x+8\\ \text{Plug in the critical numbers:}\\ y\prime\prime(0)=8\Rightarrow0 \text{ is a minimum point}\\ y\prime\prime(1)=-4\Rightarrow1 \text{ is a maximum point}\\ y\prime\prime(2)=8\Rightarrow0 \text{ is a minimum point}\\ \text{Thus, the function has local maximum at (1, 1) and local minimum at (2, 0),(0, 0)}.\\ \quad\\ \quad\\ \quad\\ 6)\\ y=x^3-6^2-15x+50, \text{differentiating yields:}\\y\prime=3(x-5)(x+1)\\ \quad\text{At critical point, }y\prime=0 \Rightarrow x=5,-1 \text{ are the critical points.}\\ \text{\textbf{FIRST DERIVATIVE TEST:}}\\ y\prime(-2)=21\Rightarrow increasing\ on\ (-\infty,-1) \\ y\prime(0)=-15\Rightarrow decreasing\ on\ (-1,5)\\ y\prime(9)=120\Rightarrow increasing\ on\ (5,\infty) \\ \text{Since switching from decreasing to increasing and increasing to decreasing at a point}\\ \Rightarrow \text{the point is a local minimum point and local maximum point respectively, thus}\\ \text{x = -1 is a local maximum point and x = 5 is a local minimum point.}\\ \text{Thus, the function has local maximum at (-1, 58) and local minimum at (5, -50)}.\\ \quad\\ \text{\textbf{SECOND DERIVATIVE TEST:}}\\ y\prime\prime=6x-12\\ \text{Plug in the critical numbers:}\\ y\prime\prime(-1)=-18\Rightarrow0 \text{ is a maximum point}\\ y\prime\prime(5)=18\Rightarrow1 \text{ is a minimum point}\\ \text{Thus, the function has local maximum at (-1, 58) and local minimum at (5, -50)}.\\ \quad\\ \quad\\ \quad\\ 7)\\ y=\frac{x(4a-x)^3}{9a^3}, \text{differentiating yields:}\\y\prime=\frac{(4a-x)^2(4a-4x)}{9a^3}\\ \quad\text{At critical point, }y\prime=0 \Rightarrow x=a, 4a \text{ are the critical points.}\\ \quad\\ \text{Determine the 2nd derivative:}\\ 9a^3 y'' = -12(4a - x)(2a - x)\\ \quad\\ x = 4a\Rightarrow\\ y=0\\ \text{Check if Maxima or Minima.}\\ 9a^3 y''(4a) = -12(4a - 4a)(2a - 4a)\Rightarrow y'' = 0 \ (\text{inflection point})\\ \text{Hence, (4a, 0) is neither maximum nor minimum}\\ \quad\\ x=a \Rightarrow y=3a\\ \text{Check if Maxima or Minima}\\ y''(a) = (-)\ (\text{the curve is concave downward})\\ \text{Hence, (a, 0) is maximum.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS