Locate the critical points and determine whether the given functions are either
maxima or minima using First Derivate Test and Second Derivative Test:
5. 𝑦 = 𝑥 ²(𝑥 − 2)²
6. 𝑦 = 𝑥(𝑥² − 6𝑥 − 15) + 50
7. 9a³y = x(4a − x)³
1
Expert's answer
2022-01-24T03:11:15-0500
1)We are given,y2=6x−3From the given line x+3y=7We havey=−3x+37Therefore, the Slope of this line is m=−31.The Slope perpendicular to the Slope of the given line (m⊥) is m⊥=3.Next, differentiating y2=6x+3 implicitly wrt x:⇒2yy′=6⇒y′=y3=mtan,where mtan is the Slope of a tangent line to the curve y2=6x−3.Next, m⊥=mtan⇒3=y3⇒y=1Therefore y2=6x−3⇒12=6x−3⇒x=32Therefore, the eqn. of the tangent passing through (32,1) isx−32y−1=m⊥=3⇒y=3x−1Therefore, the eqn. of the tangent line isy=3x−1Next,mnormal=−mtan1=−3ymnormal=m⊥⇒3=−3y⇒y=−9So, y2=6x−3⇒(−9)2=6x−3⇒x=14Therefore, the eqn. of the normal passing through (14,-9) isx−14y+9=m⊥=3⇒y=3x−51.2)We are given,x2+2y2=9From the given line 4x−y=6We havey=4x−6Therefore, the Slope of this line is m=4.The Slope perpendicular to the Slope of the given line (m⊥) is m⊥=−41.Next, differentiating x2+2y2=9 implicitly wrt x:⇒2x+4yy′=0⇒y′=2y−x=mtan,where mtan is the Slope of a tangent line to the curve x2+2y2=9.Next, m⊥=mtan⇒−41=−2yx⇒y=2xTherefore x2+2y2=9⇒x2+2(2x)2=9⇒x=−1,1At x=-1, y=-2At x=1, y=2The eqn. of the tangent passing through (−1,−2), isx+1y+2=m⊥=−41⇒y=−4x−49Also, the eqn. of the tangent passing through (1,2), isx−1y−2=m⊥=−41⇒y=−4x+49Therefore, the eqn. of the tangent lines arey=−4x−49,y=−4x+49Next,mnormal=−mtan1=x2ymnormal=m⊥⇒−41=x2y⇒y=−8xSo, x2+2y2=9⇒x2+2(−8x)2=9⇒x=±1196At x=1196,y=−223At x=−1196,y=223The eqn. of the tangent passing through (1196,−223), isx−1196y+223=m⊥=−41⇒y=−4x−116Also, the eqn. of the tangent passing through (−1196,223), isx+1196y−223=m⊥=−41⇒y=−4x+116y=−4x−116,y=−4x+1163)We are given (x−y)2+4x−1=0differentiating (x−y)2+4x−1=0 implicitly wrt x;⇒2(x−y)(−y′)+4=0⇒y′=x−y2At (1,0);mtan=y′=1−02=2Thus, the equation of the tangent of the curve at (1, 0) is;x−1y−0=2=mtan⇒y=2(x−1)Next, mtan×mnormal=−1⇒mnormal=2−1Thus, the equation of the normal of the curve at (1, 0) is;x−1y−0=2−1=mnormal⇒y=−2x+214)We are given y=x+22xdifferentiating y=x+22x implicitly wrt x;⇒y′=(x+2)24At x=2;mtan=y′=41,y=1Thus, the equation of the tangent of the curve passing through (2, 1) is;x−2y−1=41=mtan⇒y=4x+21Next, mtan×mnormal=−1⇒mnormal=−4Thus, the equation of the normal of the curve at (2, 1) is;x−2y−1=−4=mnormal⇒y=−4x+95)y=x2(x−2)2,differentiating yields:y′=4x(x−1)(x−2)At critical point, y′=0⇒x=0,1,2 are the critical points.FIRST DERIVATIVE TEST:y′(−1)=−24⇒decreasingon(−∞,0)y′(21)=23⇒increasingon(1,2)y′(23)=−23⇒decreasingon(0,1)y′(3)=24⇒increasingon(2,∞)Since switching from decreasing to increasing and increasing to decreasing at a point⇒the point is a local minimum point and local maximum point respectively, thusx = 1 is a local maximum point and x = 0, 2 are local minimum points.Thus, the function has local maximum at (1, 1) and local minimum at (2, 0),(0, 0).SECOND DERIVATIVE TEST:y′′=12x2−24x+8Plug in the critical numbers:y′′(0)=8⇒0 is a minimum pointy′′(1)=−4⇒1 is a maximum pointy′′(2)=8⇒0 is a minimum pointThus, the function has local maximum at (1, 1) and local minimum at (2, 0),(0, 0).6)y=x3−62−15x+50,differentiating yields:y′=3(x−5)(x+1)At critical point, y′=0⇒x=5,−1 are the critical points.FIRST DERIVATIVE TEST:y′(−2)=21⇒increasingon(−∞,−1)y′(0)=−15⇒decreasingon(−1,5)y′(9)=120⇒increasingon(5,∞)Since switching from decreasing to increasing and increasing to decreasing at a point⇒the point is a local minimum point and local maximum point respectively, thusx = -1 is a local maximum point and x = 5 is a local minimum point.Thus, the function has local maximum at (-1, 58) and local minimum at (5, -50).SECOND DERIVATIVE TEST:y′′=6x−12Plug in the critical numbers:y′′(−1)=−18⇒0 is a maximum pointy′′(5)=18⇒1 is a minimum pointThus, the function has local maximum at (-1, 58) and local minimum at (5, -50).7)y=9a3x(4a−x)3,differentiating yields:y′=9a3(4a−x)2(4a−4x)At critical point, y′=0⇒x=a,4a are the critical points.Determine the 2nd derivative:9a3y′′=−12(4a−x)(2a−x)x=4a⇒y=0Check if Maxima or Minima.9a3y′′(4a)=−12(4a−4a)(2a−4a)⇒y′′=0(inflection point)Hence, (4a, 0) is neither maximum nor minimumx=a⇒y=3aCheck if Maxima or Minimay′′(a)=(−)(the curve is concave downward)Hence, (a, 0) is maximum.
Comments