If diagonal of a box is fixed = 1 unit; and length = x , breadth = y, height = z. Then; using Language Multiplier method, the problem : maximise the volume of the box":
"\\text{We need to maximize: v(x,y,z)=xyz}\\\\\n\\text{Subject to: g(x,y,z)}=x^2+y^2+z^2-1=0\\\\\n\\text{By equating }\\nabla \\text{v(x,y,z)}=\\text{yzi}+\\text{xzj}+\\text{xyk} \\text{ and } \\lambda \\nabla\\text{g(x,y,z)}=\\lambda\\text{(2xi}+\\text{2yj}+\\text{2zk) we obtain the following system of equations:}\\\\\nyz=2x\\lambda\\\\\nxz=2y\\lambda\\\\\nxy=2z\\lambda\\text{ and}\\\\\nx^2+y^2+z^2=1\\\\\n\\text{Solving this system yields the following real solutions: }\\\\\n(x,y,z)=(-1,0,0)\\\\\n(x,y,z)=(0,-1,0)\\\\\n(x,y,z)=(0,0,-1)\\\\\n(x,y,z)=(0,0,1)\\\\\n(x,y,z)=(0,1,0)\\\\\n(x,y,z)=(1,0,0)\\\\\n(x,y,z)=(-\\frac{\\sqrt3}{3},-\\frac{\\sqrt3}{3},-\\frac{\\sqrt3}{3})\\\\\n(x,y,z)=(-\\frac{\\sqrt3}{3},-\\frac{\\sqrt3}{3},\\frac{\\sqrt3}{3})\\\\\n(x,y,z)=(-\\frac{\\sqrt3}{3},\\frac{\\sqrt3}{3},-\\frac{\\sqrt3}{3})\\\\\n(x,y,z)=(-\\frac{\\sqrt3}{3},\\frac{\\sqrt3}{3},\\frac{\\sqrt3}{3})\\\\\n(x,y,z)=(\\frac{\\sqrt3}{3},-\\frac{\\sqrt3}{3},-\\frac{\\sqrt3}{3})\\\\\n(x,y,z)=(\\frac{\\sqrt3}{3},-\\frac{\\sqrt3}{3},\\frac{\\sqrt3}{3})\\\\\n(x,y,z)=(\\frac{\\sqrt3}{3},\\frac{\\sqrt3}{3},-\\frac{\\sqrt3}{3})\\\\\n(x,y,z)=(\\frac{\\sqrt3}{3},\\frac{\\sqrt3}{3},\\frac{\\sqrt3}{3})\\\\\n\\text{Now, substituting the above solutions into v(x,y,z) yields:}\\\\\n\\text{v}(-1,0,0)=0\\\\\n\\text{v}(0,-1,0)=0\\\\\n\\text{v}(0,0,-1)=0\\\\\n\\text{v}(0,0,1)=0\\\\\n\\text{v}(0,1,0)=0\\\\\n\\text{v}(1,0,0)=0\\\\\n\\text{v}(-\\frac{\\sqrt3}{3},-\\frac{\\sqrt3}{3},-\\frac{\\sqrt3}{3})=-\\frac{\\sqrt3}{9}\\\\\n\\text{v}(-\\frac{\\sqrt3}{3},-\\frac{\\sqrt3}{3},\\frac{\\sqrt3}{3})=\\frac{\\sqrt3}{9}\\\\\n\\text{v}(-\\frac{\\sqrt3}{3},\\frac{\\sqrt3}{3},-\\frac{\\sqrt3}{3})=\\frac{\\sqrt3}{9}\\\\\n\\text{v}(-\\frac{\\sqrt3}{3},\\frac{\\sqrt3}{3},\\frac{\\sqrt3}{3})=-\\frac{\\sqrt3}{9}\\\\\n\\text{v}(\\frac{\\sqrt3}{3},-\\frac{\\sqrt3}{3},-\\frac{\\sqrt3}{3})=\\frac{\\sqrt3}{9}\\\\\n\\text{v}(\\frac{\\sqrt3}{3},-\\frac{\\sqrt3}{3},\\frac{\\sqrt3}{3})=-\\frac{\\sqrt3}{9}\\\\\n\\text{v}(\\frac{\\sqrt3}{3},\\frac{\\sqrt3}{3},-\\frac{\\sqrt3}{3})=-\\frac{\\sqrt3}{9}\\\\\n\\text{v}(\\frac{\\sqrt3}{3},\\frac{\\sqrt3}{3},\\frac{\\sqrt3}{3})=\\frac{\\sqrt3}{9}\\\\\n\\text{Thus the maximum volume of the box is }\\frac{\\sqrt3}{9}."
Comments
Leave a comment