If diagonal of a box is fixed = 1 unit; and length = x , breadth = y, height = z. Then; using Language Multiplier method, the problem : maximise the volume of the box":
1
Expert's answer
2022-01-20T17:38:20-0500
We need to maximize: v(x,y,z)=xyzSubject to: g(x,y,z)=x2+y2+z2−1=0By equating ∇v(x,y,z)=yzi+xzj+xyk and λ∇g(x,y,z)=λ(2xi+2yj+2zk) we obtain the following system of equations:yz=2xλxz=2yλxy=2zλ andx2+y2+z2=1Solving this system yields the following real solutions: (x,y,z)=(−1,0,0)(x,y,z)=(0,−1,0)(x,y,z)=(0,0,−1)(x,y,z)=(0,0,1)(x,y,z)=(0,1,0)(x,y,z)=(1,0,0)(x,y,z)=(−33,−33,−33)(x,y,z)=(−33,−33,33)(x,y,z)=(−33,33,−33)(x,y,z)=(−33,33,33)(x,y,z)=(33,−33,−33)(x,y,z)=(33,−33,33)(x,y,z)=(33,33,−33)(x,y,z)=(33,33,33)Now, substituting the above solutions into v(x,y,z) yields:v(−1,0,0)=0v(0,−1,0)=0v(0,0,−1)=0v(0,0,1)=0v(0,1,0)=0v(1,0,0)=0v(−33,−33,−33)=−93v(−33,−33,33)=93v(−33,33,−33)=93v(−33,33,33)=−93v(33,−33,−33)=93v(33,−33,33)=−93v(33,33,−33)=−93v(33,33,33)=93Thus the maximum volume of the box is 93.
Comments