We have
A = 2 x z 2 i − y z j + 3 x z 3 k A=2xz^{2}i-yzj+3xz^{3}k A = 2 x z 2 i − yz j + 3 x z 3 k
To get the value for Curl A A A
We shall find the cross product ∇ \nabla ∇ X A A A
So, we have
∇ \nabla ∇ X A A A = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z 2 x z 2 − y z j 3 x z 3 ∣ \displaystyle =\begin{vmatrix}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2xz^{2} & -yzj & 3xz^{3}
\end{vmatrix} = ∣ ∣ i ∂ x ∂ 2 x z 2 j ∂ y ∂ − yz j k ∂ z ∂ 3 x z 3 ∣ ∣
= i { ∂ ∂ y ( 3 x z 3 ) − ∂ ∂ z ( − y z ) } − j { ∂ ∂ x ( 3 x z 3 ) − ∂ ∂ z ( 2 x z 2 ) } + k { ∂ ∂ x ( − y z ) − ∂ ∂ y ( 2 x z 2 ) } \displaystyle\\=i\left\{\frac{\partial}{\partial y}(3xz^{3})-\frac{\partial}{\partial z}(-yz)\right\}-j\left\{\frac{\partial}{\partial x}(3xz^{3})-\frac{\partial}{\partial z}(2xz^{2})\right\}+k\left\{\frac{\partial}{\partial x}(-yz)-\frac{\partial}{\partial y}(2xz^{2})\right\} = i { ∂ y ∂ ( 3 x z 3 ) − ∂ z ∂ ( − yz ) } − j { ∂ x ∂ ( 3 x z 3 ) − ∂ z ∂ ( 2 x z 2 ) } + k { ∂ x ∂ ( − yz ) − ∂ y ∂ ( 2 x z 2 ) }
= i { − ( − y ) } − j { 3 z 3 − 4 x z } + k { 0 − 0 } =i\left\{-(-y)\right\}-j\left\{3z^{3}-4xz\right\}+k\left\{0-0\right\} = i { − ( − y ) } − j { 3 z 3 − 4 x z } + k { 0 − 0 }
= y i − ( 3 z 3 − 4 x z ) j + 0 k = y i − z ( 3 z 2 − 4 x ) j =yi-(3z^{3}-4xz)j+0k\\=yi-z(3z^{2}-4x)j = y i − ( 3 z 3 − 4 x z ) j + 0 k = y i − z ( 3 z 2 − 4 x ) j
Which is the value of Curl A .
Comments