If A=2xz^2i-yzj+3xz^3k then what is the value of curlA?
We have
"A=2xz^{2}i-yzj+3xz^{3}k"
To get the value for Curl "A"
We shall find the cross product "\\nabla" X "A"
So, we have
"\\nabla" X "A" "\\displaystyle =\\begin{vmatrix}\n i & j & k \\\\\n \\frac{\\partial}{\\partial x} & \\frac{\\partial}{\\partial y} & \\frac{\\partial}{\\partial z} \\\\\n2xz^{2} & -yzj & 3xz^{3}\n\\end{vmatrix}"
"\\displaystyle\\\\=i\\left\\{\\frac{\\partial}{\\partial y}(3xz^{3})-\\frac{\\partial}{\\partial z}(-yz)\\right\\}-j\\left\\{\\frac{\\partial}{\\partial x}(3xz^{3})-\\frac{\\partial}{\\partial z}(2xz^{2})\\right\\}+k\\left\\{\\frac{\\partial}{\\partial x}(-yz)-\\frac{\\partial}{\\partial y}(2xz^{2})\\right\\}"
"=i\\left\\{-(-y)\\right\\}-j\\left\\{3z^{3}-4xz\\right\\}+k\\left\\{0-0\\right\\}"
"=yi-(3z^{3}-4xz)j+0k\\\\=yi-z(3z^{2}-4x)j"
Which is the value of Curl A.
Comments
Leave a comment