Question #289125

limT(x-0){(a^x-1)/x then value of limit is

1
Expert's answer
2022-01-21T10:18:34-0500

Let y=ax1,a>0,y=a^x-1, a>0, then 1+y=ax,1+y=a^x, we have


x=ln(1+y)lnax=\dfrac{\ln(1+y)}{\ln a}limx0y=limx0(ax1)=a01=11=0\lim\limits_{x\to 0}y=\lim\limits_{x\to 0}(a^x-1)=a^0-1=1-1=0

Therefore, the given limit can be written as


limx0ax1x=limy0yln(1+y)lna\lim\limits_{x\to 0}\dfrac{a^x-1}{x}=\lim\limits_{y\to 0}\dfrac{y}{\dfrac{\ln(1+y)}{\ln a}}

=lnalimy01ln(1+y)1/y=lnaln(limy0(1+y)1/y)=\ln a\cdot\lim\limits_{y\to 0}\dfrac{1}{\ln(1+y)^{1/y}}=\dfrac{\ln a}{\ln (\lim\limits_{y\to 0}(1+y)^{1/y})}

=lnaln(e)=lna=\dfrac{\ln a}{\ln (e)}=\ln a

limx0ax1x=lna\lim\limits_{x\to 0}\dfrac{a^x-1}{x}=\ln a


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS