Question #287379

U= (x^2+y^2+z^2)^m/2 find value of m Uxx+Uyy+Uzz=0


1
Expert's answer
2022-01-17T15:24:29-0500

U=(x2+y2+z2)m/2U= (x^2+y^2+z^2)^{m/2}


Ux=mx(x2+y2+z2)m/21U_{x}=mx (x^2+y^2+z^2)^{m/2-1}

Uxx=2m(m/21)x2(x2+y2+z2)m/22+m(x2+y2+z2)m/21=U_{xx}=2m(m/2-1)x^2 (x^2+y^2+z^2)^{m/2-2}+m (x^2+y^2+z^2)^{m/2-1}=

=m(x2+y2+z2)m/21(2x2(m/21)(x2+y2+z2)1+1)=m (x^2+y^2+z^2)^{m/2-1}(2x^2(m/2-1) (x^2+y^2+z^2)^{-1}+1)


U=my(x2+y2+z2)m/21U_{}=my (x^2+y^2+z^2)^{m/2-1}

Uyy=2m(m/21)y2(x2+y2+z2)m/22+m(x2+y2+z2)m/21=U_{yy}=2m(m/2-1)y^2 (x^2+y^2+z^2)^{m/2-2}+m (x^2+y^2+z^2)^{m/2-1}=

=m(x2+y2+z2)m/21(2y2(m/21)(x2+y2+z2)1+1)=m (x^2+y^2+z^2)^{m/2-1}(2y^2(m/2-1) (x^2+y^2+z^2)^{-1}+1)


Uz=mz(x2+y2+z2)m/21U_{z}=mz (x^2+y^2+z^2)^{m/2-1}

Uzz=2m(m/21)z2(x2+y2+z2)m/22+m(x2+y2+z2)m/21=U_{zz}=2m(m/2-1)z^2 (x^2+y^2+z^2)^{m/2-2}+m (x^2+y^2+z^2)^{m/2-1}=

=m(x2+y2+z2)m/21(2z2(m/21)(x2+y2+z2)1+1)=m (x^2+y^2+z^2)^{m/2-1}(2z^2(m/2-1) (x^2+y^2+z^2)^{-1}+1)


Uxx+Uyy+Uzz = =m(x2+y2+z2)m/21(2(x2+y2+z2)(m/21)(x2+y2+z2)1+3)=0=m (x^2+y^2+z^2)^{m/2-1}(2(x^2+y^2+z^2)(m/2-1) (x^2+y^2+z^2)^{-1}+3)=0


m1=0m_1=0


2(x2+y2+z2)(m/21)(x2+y2+z2)1+3=02(x^2+y^2+z^2)(m/2-1) (x^2+y^2+z^2)^{-1}+3=0

m/21=3/2m/2-1=-3/2


m2=2(13/2)=1m_2=2(1-3/2)=-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS