Question #286993

graphing p(x)=x⁶+2x⁵-2x³-x²

1
Expert's answer
2022-01-13T07:44:27-0500
p(x)=x6+2x52x3x2p(x)=x^6+2x^5-2x^3-x^2

DomainL: (,)(-\infin, \infin)

As x,yx\to-\infin,y\to\infin

As x,yx\to\infin,y\to\infin

There are no asymptotes


p(x)=(x)6+2(x)52(x)3(x)2p(-x)=(-x)^6+2(-x)^5-2(-x)^3-(-x)^2

=x62x5+2x3x2=x^6-2x^5+2x^3-x^2

The function p(x)p(x) is neither even nor odd.

yy -intercept: x=0,y=p(0)=(0)6+2(0)52(0)3(0)2=0x=0, y=p(0)=(0)^6+2(0)^5-2(0)^3-(0)^2=0

(0,0)(0,0)


xx -intercept(s): y=0=>x62x5+2x3x2=0y=0=>x^6-2x^5+2x^3-x^2=0



x2(x42x3+2x1)=0x^2(x^4-2x^3+2x-1)=0

x2(x+1)3(x1)=0x^2(x+1)^3(x-1)=0

x1=x2=x3=1,x4=x5=0,x6=1x_1= x_2=x_3=-1, x_4=x_5=0,x_6=1

(1,0),(0,0),(1,0)(-1,0), (0,0), (1,0)

The graph passes through the origin.

Find the first derivative


p(x)=6x5+10x46x22xp'(x)=6x^5+10x^4-6x^2-2x

Find the critical number(s)


p(x)=0=>6x5+10x46x22x=0p'(x)=0=>6x^5+10x^4-6x^2-2x=0

2x(3x4+5x33x1)=02x(3x^4+5x^3-3x-1)=0

2x(x+1)2(3x2x1)=02x(x+1)^2(3x^2-x-1)=0

x1=x2=1,x3=0,x_1=x_2=-1, x_3=0,

x4=1136,x5=1+136x_4=\dfrac{1-\sqrt{13}}{6}, x_5=\dfrac{1+\sqrt{13}}{6}

Critical numbers: 1,1136,0,1+136-1,\dfrac{1-\sqrt{13}}{6}, 0,\dfrac{1+\sqrt{13}}{6}

If x<1,p(x)<0,p(x)x<-1, p'(x)<0, p(x) decreases.

If 1<x<1136,p(x)<0,p(x)-1<x<\dfrac{1-\sqrt{13}}{6}, p'(x)<0, p(x) decreases.

If 1136<x<0,p(x)>0,p(x)\dfrac{1-\sqrt{13}}{6}<x<0, p'(x)>0, p(x) increases.

If 0<x<1+136,p(x)<0,p(x)0<x<\dfrac{1+\sqrt{13}}{6}, p'(x)<0, p(x) decreases.

If x>1+136,p(x)>0,p(x)x>\dfrac{1+\sqrt{13}}{6}, p'(x)>0, p(x) increases.


p(1)=(1)6+2(1)52(1)3(1)2=0p(-1)=(-1)^6+2(-1)^5-2(-1)^3-(-1)^2=0

p(1136)=(1136)6+2(1136)5p(\dfrac{1-\sqrt{13}}{6})=(\dfrac{1-\sqrt{13}}{6})^6+2(\dfrac{1-\sqrt{13}}{6})^5

2(1136)3(1136)2-2(\dfrac{1-\sqrt{13}}{6})^3-(\dfrac{1-\sqrt{13}}{6})^2

=587143131458=-\dfrac{587-143\sqrt{13}}{1458}

p(1+136)=(1+136)6+2(1+136)5p(\dfrac{1+\sqrt{13}}{6})=(\dfrac{1+\sqrt{13}}{6})^6+2(\dfrac{1+\sqrt{13}}{6})^5

2(1+136)3(1+136)2=-2(\dfrac{1+\sqrt{13}}{6})^3-(\dfrac{1+\sqrt{13}}{6})^2=




=587+143131458=-\dfrac{587+143\sqrt{13}}{1458}




p(0)=(0)6+2(0)52(0)3(0)2=0p(0)=(0)^6+2(0)^5-2(0)^3-(0)^2=0

The function p(x)p(x) has a local maximum with value of at x=0.x=0.

The function p(x)p(x) has a local minimum with value of 587143131458-\dfrac{587-143\sqrt{13}}{1458} at x=1136.x=\dfrac{1-\sqrt{13}}{6}.

The function p(x)p(x) has a local minimum with value of 587+143131458-\dfrac{587+143\sqrt{13}}{1458} at x=1+136.x=\dfrac{1+\sqrt{13}}{6}.

Find the second derivative


p(x)=30x4+40x312x2p''(x)=30x^4+40x^3-12x-2

Find the point(s) of inflection.


p(x)=0=>30x4+40x312x2=0p''(x)=0=>30x^4+40x^3-12x-2=0

2(x+1)(15x3+5x25x1)=02(x+1)(15x^3+5x^2-5x-1)=0

x1=1,x20.6795,x30.1848,x_1=-1, x_2\approx-0.6795, x_3\approx-0.1848,

x40.5310x_4\approx0.5310

The function p(x)p(x) has the inflection points at x=1,x=0.6795,x=-1, x=-0.6795,

x=0.1848,0.5310.x=-0.1848,0.5310.

If x<1,p(x)>0,p(x)x<-1, p''(x)>0, p(x) is concave up.

If 1<x<0.6795,p(x)<0,p(x)-1<x<-0.6795, p''(x)<0, p(x) is concave down.

If 0.6795<x<0.1848,p(x)>0,p(x)-0.6795<x<-0.1848, p''(x)>0, p(x) is concave up.

If 0.1848<x<0.5310,p(x)<0,p(x)-0.1848<x<0.5310, p''(x)<0, p(x) is concave down.

If x>0.5310,p(x)>0,p(x)x>0.5310, p''(x)>0, p(x) is concave up.


Graph of the function


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS