p(x)=x6+2x5−2x3−x2 DomainL: (−∞,∞)
As x→−∞,y→∞
As x→∞,y→∞
There are no asymptotes
p(−x)=(−x)6+2(−x)5−2(−x)3−(−x)2
=x6−2x5+2x3−x2 The function p(x) is neither even nor odd.
y -intercept: x=0,y=p(0)=(0)6+2(0)5−2(0)3−(0)2=0
(0,0)
x -intercept(s): y=0=>x6−2x5+2x3−x2=0
x2(x4−2x3+2x−1)=0
x2(x+1)3(x−1)=0
x1=x2=x3=−1,x4=x5=0,x6=1 (−1,0),(0,0),(1,0)
The graph passes through the origin.
Find the first derivative
p′(x)=6x5+10x4−6x2−2x Find the critical number(s)
p′(x)=0=>6x5+10x4−6x2−2x=0
2x(3x4+5x3−3x−1)=0
2x(x+1)2(3x2−x−1)=0
x1=x2=−1,x3=0,
x4=61−13,x5=61+13 Critical numbers: −1,61−13,0,61+13
If x<−1,p′(x)<0,p(x) decreases.
If −1<x<61−13,p′(x)<0,p(x) decreases.
If 61−13<x<0,p′(x)>0,p(x) increases.
If 0<x<61+13,p′(x)<0,p(x) decreases.
If x>61+13,p′(x)>0,p(x) increases.
p(−1)=(−1)6+2(−1)5−2(−1)3−(−1)2=0
p(61−13)=(61−13)6+2(61−13)5
−2(61−13)3−(61−13)2
=−1458587−14313
p(61+13)=(61+13)6+2(61+13)5
−2(61+13)3−(61+13)2=
=−1458587+14313
p(0)=(0)6+2(0)5−2(0)3−(0)2=0 The function p(x) has a local maximum with value of at x=0.
The function p(x) has a local minimum with value of −1458587−14313 at x=61−13.
The function p(x) has a local minimum with value of −1458587+14313 at x=61+13.
Find the second derivative
p′′(x)=30x4+40x3−12x−2 Find the point(s) of inflection.
p′′(x)=0=>30x4+40x3−12x−2=0
2(x+1)(15x3+5x2−5x−1)=0
x1=−1,x2≈−0.6795,x3≈−0.1848,
x4≈0.5310 The function p(x) has the inflection points at x=−1,x=−0.6795,
x=−0.1848,0.5310.
If x<−1,p′′(x)>0,p(x) is concave up.
If −1<x<−0.6795,p′′(x)<0,p(x) is concave down.
If −0.6795<x<−0.1848,p′′(x)>0,p(x) is concave up.
If −0.1848<x<0.5310,p′′(x)<0,p(x) is concave down.
If x>0.5310,p′′(x)>0,p(x) is concave up.
Graph of the function
Comments