∫\intop∫ 1/x2-4x+3 dx=?
By the sum rule,
∫(1x2−4x+3)dx=\int(\frac{1}{x²}-4x+3)dx=∫(x21−4x+3)dx=
∫1x2dx−∫4xdx+∫3dx\int \frac{1}{x²}dx-\int4xdx+\int3dx∫x21dx−∫4xdx+∫3dx
Integrating each integral, we have
=−1x−2x2+3x+c=-\frac{1}{x}-2x²+3x+c=−x1−2x2+3x+c
( ccc is added since it's an indefinite integral).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments