"\\intop" 2-1 1/ 3√x2 dx=?
"{\\int_{-1}^{2} {\\frac 1 {3\\sqrt{x^2}}} dx}={\\int_{-1}^{2} {\\frac 1 {3*|x|}} dx}={\\int_{-1}^{0} {\\frac 1 {3*(-x)}} dx}+{\\int_{0}^{2} {\\frac 1 {3*x}} dx}=-{\\frac 1 3}{\\int_{-1}^{0} {\\frac 1 x} dx}+{\\frac 1 3}{\\int_{0}^{2} {\\frac 1 x} dx}=-{\\frac 1 3}*ln|x||_{x=-1}^{x=0}+{\\frac 1 3}*ln|x||_{x=0}^{x=2}=-{\\frac 1 3}*{\\lim_{x\\to{0^-}} ln(-x)}+{\\frac 1 3}*ln(1)+{\\frac 1 3}*ln(2)-{\\frac 1 3}*{\\lim_{x\\to{0^+}} ln(x)}"
Since "{\\lim_{x\\to0^+} lnx}=-\\infty", then this integral is divergent and equals "\\infty"
Comments
Leave a comment