∫ − 1 2 1 3 x 2 d x = ∫ − 1 2 1 3 ∗ ∣ x ∣ d x = ∫ − 1 0 1 3 ∗ ( − x ) d x + ∫ 0 2 1 3 ∗ x d x = − 1 3 ∫ − 1 0 1 x d x + 1 3 ∫ 0 2 1 x d x = − 1 3 ∗ l n ∣ x ∣ ∣ x = − 1 x = 0 + 1 3 ∗ l n ∣ x ∣ ∣ x = 0 x = 2 = − 1 3 ∗ lim x → 0 − l n ( − x ) + 1 3 ∗ l n ( 1 ) + 1 3 ∗ l n ( 2 ) − 1 3 ∗ lim x → 0 + l n ( x ) {\int_{-1}^{2} {\frac 1 {3\sqrt{x^2}}} dx}={\int_{-1}^{2} {\frac 1 {3*|x|}} dx}={\int_{-1}^{0} {\frac 1 {3*(-x)}} dx}+{\int_{0}^{2} {\frac 1 {3*x}} dx}=-{\frac 1 3}{\int_{-1}^{0} {\frac 1 x} dx}+{\frac 1 3}{\int_{0}^{2} {\frac 1 x} dx}=-{\frac 1 3}*ln|x||_{x=-1}^{x=0}+{\frac 1 3}*ln|x||_{x=0}^{x=2}=-{\frac 1 3}*{\lim_{x\to{0^-}} ln(-x)}+{\frac 1 3}*ln(1)+{\frac 1 3}*ln(2)-{\frac 1 3}*{\lim_{x\to{0^+}} ln(x)} ∫ − 1 2 3 x 2 1 d x = ∫ − 1 2 3 ∗ ∣ x ∣ 1 d x = ∫ − 1 0 3 ∗ ( − x ) 1 d x + ∫ 0 2 3 ∗ x 1 d x = − 3 1 ∫ − 1 0 x 1 d x + 3 1 ∫ 0 2 x 1 d x = − 3 1 ∗ l n ∣ x ∣ ∣ x = − 1 x = 0 + 3 1 ∗ l n ∣ x ∣ ∣ x = 0 x = 2 = − 3 1 ∗ lim x → 0 − l n ( − x ) + 3 1 ∗ l n ( 1 ) + 3 1 ∗ l n ( 2 ) − 3 1 ∗ lim x → 0 + l n ( x )
Since lim x → 0 + l n x = − ∞ {\lim_{x\to0^+} lnx}=-\infty lim x → 0 + l n x = − ∞ , then this integral is divergent and equals ∞ \infty ∞
Comments