Question #286807

Find dp/dq If P= q²+3/(q-1)³+(q+1)³


1
Expert's answer
2022-01-12T18:25:23-0500

p=q2+3(q1)3+(q+1)3p=q²+\frac{3}{(q-1)³}+(q+1)³

Differentiate both sides of the equation

dpdq=ddq(q2+3(q1)3+(q+3)3\frac{dp}{dq}=\frac{d}{dq}(q²+\frac{3}{(q-1)³}+(q+3)³

The derivative of p with respect to q is

pp' .

By the sum rule,

    p=ddq(q2)+ddq3(q1)3+ddq(q+1)3\implies p'=\frac{d}{dq}(q²)+\frac{d}{dq}\frac{3}{(q-1)³}+\frac{d}{dq}(q+1)³

Differentiating the right side of the equation

p=2q9(q1)4+3(q+1)2p'=2q-\frac{9}{(q-1)⁴}+3(q+1)²


    dpdq=2q9(q1)4+3(q+1)2\implies \frac{dp}{dq}=2q-\frac{9}{(q-1)⁴}+3(q+1)²





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS