Question #286242

01) Identify the X intercepts of this quadratic function y = 2x- x²


(02) Find the coordinates of maximum point of y = -4x + 8x – 2 by using equation y by using equetion method.



(03) Graph the quadratic function y = -3x +x+1 and you are required to answer the followings by using the graph:



(i) Coordinates of maximum point


(ii) Axis of symmetry


1
Expert's answer
2022-01-11T01:04:46-0500

(01)

X-intercept(s)


y=0=>2xx2=0y=0=> 2x- x^2=0

x(2x)=0x(2-x)=0

x1=0,x2=2x_1=0, x_2=2

X-intercept(s): (0,0),(2,0).(0, 0), (2, 0).


(02)


y=3x2+8x2y=-3x^2+8x-2

y=3(x22(43)x+(43)2)+1632y=-3(x^2-2(\dfrac{4}{3})x+(\dfrac{4}{3})^2)+\dfrac{16}{3}-2

y=3(x43)2+103y=-3(x-\dfrac{4}{3})^2+\dfrac{10}{3}

The maximum point is (43,103).(\dfrac{4}{3}, \dfrac{10}{3}).


(03)


y=3x2+x+1y = -3x^2 +x+1y=3(x22(16)x+(16)2)+112+1y=-3(x^2-2(\dfrac{1}{6})x+(\dfrac{1}{6})^2)+\dfrac{1}{12}+1y=3(x16)2+1312y=-3(x-\dfrac{1}{6})^2+\dfrac{13}{12}

The maximum point is (16,1312).(\dfrac{1}{6}, \dfrac{13}{12}).


Axis of symmetry: x=16x=\dfrac{1}{6}

y-intercept


x=0=>y=3(0)2+0+1=1x=0=> y=-3(0)^2+0+1=1

y-intercept: (0,1).(0, 1).

X-intercept(s)


y=0=>3x2+x+1=0y=0=> -3x^2+x+1=0D=(1)24(3)(1)=13D=(1)^2-4(-3)(1)=13x1,2=1±132(3)x_{1,2}=\dfrac{-1\pm \sqrt{13}}{2(-3)}

x1=1136,x2=1+136x_{1}=\dfrac{1- \sqrt{13}}{6}, x_{2}=\dfrac{1+\sqrt{13}}{6}

X-intercept(s): (1136,0),(1+136,0).(\dfrac{1- \sqrt{13}}{6}, 0), (\dfrac{1+\sqrt{13}}{6}, 0).



(i) The maximum point is (43,103).(\dfrac{4}{3}, \dfrac{10}{3}).


(ii) Axis of symmetry: x=16x=\dfrac{1}{6}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS