Question #286172

Find the local and absolute extreme values of the function on the given interval. Also

specify the intervals where function is increasing or decreasing

𝑓(𝑥) = 𝑥 + 2𝑐𝑜𝑠𝑥


1
Expert's answer
2022-01-10T16:38:17-0500
f(x)=x+2cosxf(x)=x+2\cos x


Domain: (,)(-\infin, \infin)

Find the fist derivative with respect to xx

f(x)=(x+2cosx)=12sinxf'(x)=(x+2\cos x)'=1-2\sin x

Find the critical number(s)


f(x)=0=>12sinx=0f'(x)=0=>1-2\sin x=0

x=(1)nπ6+πn,nZx=(-1)^n\dfrac{\pi}{6}+\pi n, n\in \Z

Critical numbers: (1)nπ6+πn,nZ(-1)^n\dfrac{\pi}{6}+\pi n, n\in \Z

Find the second derivative with respect to xx

f(x)=(12sinx)=cosxf''(x)=(1-2\sin x)'=-\cos x




f(π6+2πn)=32<0f''(\dfrac{\pi}{6}+2\pi n)=-\dfrac{\sqrt{3}}{2}<0

f(5π6+2πn)=32>0f''(\dfrac{5\pi}{6}+2\pi n)=\dfrac{\sqrt{3}}{2}>0

i) If x[π,π]x\in [-\pi, \pi]


f(π)=π+2cos(π)=π2f(-\pi)=-\pi+2\cos (-\pi)=-\pi-2

f(π)=π+2cos(π)=π2f(\pi)=\pi+2\cos (\pi)=\pi-2

f(π6)=π6+3f(\dfrac{\pi}{6})=\dfrac{\pi}{6}+\sqrt{3}

f(5π6)=5π63f(\dfrac{5\pi}{6})=\dfrac{5\pi}{6}-\sqrt{3}

The function f(x)f(x) has a local maximum on [π,π][-\pi, \pi] with value of π6+3\dfrac{\pi}{6}+\sqrt{3} at x=π6.x=\dfrac{\pi}{6}.

The function f(x)f(x) has a local minimum on [π,π][-\pi, \pi] with value of 5π63\dfrac{5\pi}{6}-\sqrt{3} at x=5π6.x=\dfrac{5\pi}{6}.

The function f(x)f(x) has the absolute maximum on [π,π][-\pi, \pi] with value of π6+3\dfrac{\pi}{6}+\sqrt{3} at x=π6.x=\dfrac{\pi}{6}.

The function f(x)f(x) has the absolute minimum on [π,π][-\pi, \pi] with value of π2-\pi-2 at x=π.x=-\pi.

The function f(x)f(x) increases on (π,π6)(5π6,π).(-\pi, \dfrac{\pi}{6})\cup(\dfrac{5\pi}{6}, \pi).

The function f(x)f(x) decreases on (π6,5π6).(\dfrac{\pi}{6}, \dfrac{5\pi}{6}).


ii)

The function f(x)f(x) increases on (5π6+2πn,13π6+2πn),nZ.(\dfrac{5\pi}{6}+2\pi n, \dfrac{13\pi}{6}+2\pi n), n\in \Z.

The function f(x)f(x) decreases on (π6+2πn,5π6+2πn),nZ.(\dfrac{\pi}{6}+2\pi n, \dfrac{5\pi}{6}+2\pi n), n\in \Z.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS