f ( x ) = x + 2 cos x f(x)=x+2\cos x f ( x ) = x + 2 cos x
Domain: ( − ∞ , ∞ ) (-\infin, \infin) ( − ∞ , ∞ )
Find the fist derivative with respect to x x x
f ′ ( x ) = ( x + 2 cos x ) ′ = 1 − 2 sin x f'(x)=(x+2\cos x)'=1-2\sin x f ′ ( x ) = ( x + 2 cos x ) ′ = 1 − 2 sin x Find the critical number(s)
f ′ ( x ) = 0 = > 1 − 2 sin x = 0 f'(x)=0=>1-2\sin x=0 f ′ ( x ) = 0 => 1 − 2 sin x = 0
x = ( − 1 ) n π 6 + π n , n ∈ Z x=(-1)^n\dfrac{\pi}{6}+\pi n, n\in \Z x = ( − 1 ) n 6 π + πn , n ∈ Z Critical numbers: ( − 1 ) n π 6 + π n , n ∈ Z (-1)^n\dfrac{\pi}{6}+\pi n, n\in \Z ( − 1 ) n 6 π + πn , n ∈ Z
Find the second derivative with respect to x x x
f ′ ′ ( x ) = ( 1 − 2 sin x ) ′ = − cos x f''(x)=(1-2\sin x)'=-\cos x f ′′ ( x ) = ( 1 − 2 sin x ) ′ = − cos x
f ′ ′ ( π 6 + 2 π n ) = − 3 2 < 0 f''(\dfrac{\pi}{6}+2\pi n)=-\dfrac{\sqrt{3}}{2}<0 f ′′ ( 6 π + 2 πn ) = − 2 3 < 0
f ′ ′ ( 5 π 6 + 2 π n ) = 3 2 > 0 f''(\dfrac{5\pi}{6}+2\pi n)=\dfrac{\sqrt{3}}{2}>0 f ′′ ( 6 5 π + 2 πn ) = 2 3 > 0
i) If x ∈ [ − π , π ] x\in [-\pi, \pi] x ∈ [ − π , π ]
f ( − π ) = − π + 2 cos ( − π ) = − π − 2 f(-\pi)=-\pi+2\cos (-\pi)=-\pi-2 f ( − π ) = − π + 2 cos ( − π ) = − π − 2
f ( π ) = π + 2 cos ( π ) = π − 2 f(\pi)=\pi+2\cos (\pi)=\pi-2 f ( π ) = π + 2 cos ( π ) = π − 2
f ( π 6 ) = π 6 + 3 f(\dfrac{\pi}{6})=\dfrac{\pi}{6}+\sqrt{3} f ( 6 π ) = 6 π + 3
f ( 5 π 6 ) = 5 π 6 − 3 f(\dfrac{5\pi}{6})=\dfrac{5\pi}{6}-\sqrt{3} f ( 6 5 π ) = 6 5 π − 3 The function f ( x ) f(x) f ( x ) has a local maximum on [ − π , π ] [-\pi, \pi] [ − π , π ] with value of π 6 + 3 \dfrac{\pi}{6}+\sqrt{3} 6 π + 3 at x = π 6 . x=\dfrac{\pi}{6}. x = 6 π .
The function f ( x ) f(x) f ( x ) has a local minimum on [ − π , π ] [-\pi, \pi] [ − π , π ] with value of 5 π 6 − 3 \dfrac{5\pi}{6}-\sqrt{3} 6 5 π − 3 at x = 5 π 6 . x=\dfrac{5\pi}{6}. x = 6 5 π .
The function f ( x ) f(x) f ( x ) has the absolute maximum on [ − π , π ] [-\pi, \pi] [ − π , π ] with value of π 6 + 3 \dfrac{\pi}{6}+\sqrt{3} 6 π + 3 at x = π 6 . x=\dfrac{\pi}{6}. x = 6 π .
The function f ( x ) f(x) f ( x ) has the absolute minimum on [ − π , π ] [-\pi, \pi] [ − π , π ] with value of − π − 2 -\pi-2 − π − 2 at x = − π . x=-\pi. x = − π .
The function f ( x ) f(x) f ( x ) increases on ( − π , π 6 ) ∪ ( 5 π 6 , π ) . (-\pi, \dfrac{\pi}{6})\cup(\dfrac{5\pi}{6}, \pi). ( − π , 6 π ) ∪ ( 6 5 π , π ) .
The function f ( x ) f(x) f ( x ) decreases on ( π 6 , 5 π 6 ) . (\dfrac{\pi}{6}, \dfrac{5\pi}{6}). ( 6 π , 6 5 π ) .
ii)
The function f ( x ) f(x) f ( x ) increases on ( 5 π 6 + 2 π n , 13 π 6 + 2 π n ) , n ∈ Z . (\dfrac{5\pi}{6}+2\pi n, \dfrac{13\pi}{6}+2\pi n), n\in \Z. ( 6 5 π + 2 πn , 6 13 π + 2 πn ) , n ∈ Z .
The function f ( x ) f(x) f ( x ) decreases on ( π 6 + 2 π n , 5 π 6 + 2 π n ) , n ∈ Z . (\dfrac{\pi}{6}+2\pi n, \dfrac{5\pi}{6}+2\pi n), n\in \Z. ( 6 π + 2 πn , 6 5 π + 2 πn ) , n ∈ Z .
Comments