f(x)=x+2cosx
Domain: (−∞,∞)
Find the fist derivative with respect to x
f′(x)=(x+2cosx)′=1−2sinx Find the critical number(s)
f′(x)=0=>1−2sinx=0
x=(−1)n6π+πn,n∈Z Critical numbers: (−1)n6π+πn,n∈Z
Find the second derivative with respect to x
f′′(x)=(1−2sinx)′=−cosx
f′′(6π+2πn)=−23<0
f′′(65π+2πn)=23>0
i) If x∈[−π,π]
f(−π)=−π+2cos(−π)=−π−2
f(π)=π+2cos(π)=π−2
f(6π)=6π+3
f(65π)=65π−3The function f(x) has a local maximum on [−π,π] with value of 6π+3 at x=6π.
The function f(x) has a local minimum on [−π,π] with value of 65π−3 at x=65π.
The function f(x) has the absolute maximum on [−π,π] with value of 6π+3 at x=6π.
The function f(x) has the absolute minimum on [−π,π] with value of −π−2 at x=−π.
The function f(x) increases on (−π,6π)∪(65π,π).
The function f(x) decreases on (6π,65π).
ii)
The function f(x) increases on (65π+2πn,613π+2πn),n∈Z.
The function f(x) decreases on (6π+2πn,65π+2πn),n∈Z.
Comments