Find the local and absolute extreme values of the function on the given interval. Also
specify the intervals where function is increasing or decreasing
(i) π(π₯) = (π₯2+ π₯ + 1)2
"f'(x)=\\frac{\\mathrm{d}}{\\mathrm{d} x}\\left[\\left(x^{2}+x+1\\right)^{2}\\right]\\\\\nf'(x)=2\\left(x^{2}+x+1\\right) \\cdot \\frac{\\mathrm{d}}{\\mathrm{d} x}\\left[x^{2}+x+1\\right]\\\\\nf'(x)=2\\left(x^{2}+x+1\\right)\\left(\\frac{\\mathrm{d}}{\\mathrm{d} x}\\left[x^{2}\\right]+\\frac{\\mathrm{d}}{\\mathrm{d} x}[x]+\\frac{\\mathrm{d}}{\\mathrm{d} x}[1]\\right)\\\\\nf'(x)=2\\left(x^{2}+x+1\\right)(2 x+1+0)\\\\\nf'(x)=2(2 x+1)\\left(x^{2}+x+1\\right)"
At "f'(x)=0,"
which implies,
Put the value of "x" into the given function, we have:
"\\text{Local Minimum } = (x,f(x)) = (-\\frac{1}{2},\\frac{9}{16})"
The function has no absolute extreme value.
The interval where the function is increasing or decreasing is thus:
"\\text { Decreasing: }-\\infty<x<-\\frac{1}{2}\\\\ \\text { Increasing: }-\\frac{1}{2}<x<\\infty"
Comments
Leave a comment