f′(x)=dxd[(x2+x+1)2]f′(x)=2(x2+x+1)⋅dxd[x2+x+1]f′(x)=2(x2+x+1)(dxd[x2]+dxd[x]+dxd[1])f′(x)=2(x2+x+1)(2x+1+0)f′(x)=2(2x+1)(x2+x+1)
At f′(x)=0,
2(2x+1)(x2+x+1)=0 which implies,
x=−21 Put the value of x into the given function, we have:
Local Minimum =(x,f(x))=(−21,169)
The function has no absolute extreme value.
The interval where the function is increasing or decreasing is thus:
Decreasing: −∞<x<−21 Increasing: −21<x<∞
Comments