Question #286171

Find the local and absolute extreme values of the function on the given interval. Also

specify the intervals where function is increasing or decreasing

(i) 𝑓(𝑥) = (𝑥2+ 𝑥 + 1)2

1
Expert's answer
2022-01-10T19:09:30-0500

f(x)=ddx[(x2+x+1)2]f(x)=2(x2+x+1)ddx[x2+x+1]f(x)=2(x2+x+1)(ddx[x2]+ddx[x]+ddx[1])f(x)=2(x2+x+1)(2x+1+0)f(x)=2(2x+1)(x2+x+1)f'(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left[\left(x^{2}+x+1\right)^{2}\right]\\ f'(x)=2\left(x^{2}+x+1\right) \cdot \frac{\mathrm{d}}{\mathrm{d} x}\left[x^{2}+x+1\right]\\ f'(x)=2\left(x^{2}+x+1\right)\left(\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{2}\right]+\frac{\mathrm{d}}{\mathrm{d} x}[x]+\frac{\mathrm{d}}{\mathrm{d} x}[1]\right)\\ f'(x)=2\left(x^{2}+x+1\right)(2 x+1+0)\\ f'(x)=2(2 x+1)\left(x^{2}+x+1\right)


At f(x)=0,f'(x)=0,


2(2x+1)(x2+x+1)=02(2 x+1)\left(x^{2}+x+1\right)=0

which implies,


x=12x=-\frac{1}{2}

Put the value of xx into the given function, we have:

Local Minimum =(x,f(x))=(12,916)\text{Local Minimum } = (x,f(x)) = (-\frac{1}{2},\frac{9}{16})


The function has no absolute extreme value.


The interval where the function is increasing or decreasing is thus:

 Decreasing: <x<12 Increasing: 12<x<\text { Decreasing: }-\infty<x<-\frac{1}{2}\\ \text { Increasing: }-\frac{1}{2}<x<\infty


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS