a)
s = 125 16 t + 32 − 2 5 t 5 , t ≥ 0 s=\frac{125}{16t+32}-\frac{2}{5t^5},t\ge0 s = 16 t + 32 125 − 5 t 5 2 , t ≥ 0
Acceleration =d 2 s d t 2 \frac{d^2s}{dt^2} d t 2 d 2 s
d s d t ( s ) = 2 t 6 − 2000 ( 16 t + 32 ) 2 \frac{ds}{dt}(s)=\frac{2}{t^6}-\frac{2000}{(16t+32)^2} d t d s ( s ) = t 6 2 − ( 16 t + 32 ) 2 2000
d 2 s d t 2 ( s ) = 64000 ( 16 t + 32 ) 3 − 12 t 7 \frac{d^2s}{dt^2}(s)=\frac{64000}{(16t+32)^3}-\frac{12}{t^7} d t 2 d 2 s ( s ) = ( 16 t + 32 ) 3 64000 − t 7 12
Time when Instantaneous acceleration is zero,
64000 ( 16 t + 32 ) 3 − 12 t 7 = 0 \frac{64000}{(16t+32)^3}-\frac{12}{t^7}=0 ( 16 t + 32 ) 3 64000 − t 7 12 = 0
64000 t 7 − 12 ( 16 t + 32 ) 3 = 0 64000t^7-12(16t+32)^3=0 64000 t 7 − 12 ( 16 t + 32 ) 3 = 0
64000 t 7 − 12 ( 4096 t 3 + 24576 t 2 + 49152 t + 32768 ) = 0 64000t^7-12(4096t^3+24576t^2+49152t+32768)=0 64000 t 7 − 12 ( 4096 t 3 + 24576 t 2 + 49152 t + 32768 ) = 0
Solving to get t ≈ 1.6839 t\approx1.6839 t ≈ 1.6839
Time=1.68 seconds
s = 125 16 t + 32 − 2 5 t 5 s=\frac{125}{16t+32}-\frac{2}{5t^5} s = 16 t + 32 125 − 5 t 5 2
= 125 16 ( 1.68 ) + 32 − 2 5 ( 1.68 ) 5 =\frac{125}{16(1.68)+32}-\frac{2}{5(1.68)^5} = 16 ( 1.68 ) + 32 125 − 5 ( 1.68 ) 5 2
=0.055 ft
b)
s = 9 t 2 + 2 2 t + 1 , t ≥ 0 s=9t^2+2\sqrt{2t}+1,t\ge0 s = 9 t 2 + 2 2 t + 1 , t ≥ 0
d s d t = 18 t + 2 t \frac{ds}{dt}=18t+\frac{\sqrt{2}}{\sqrt{t}} d t d s = 18 t + t 2
d 2 s d t 2 = 18 − 1 2 t 3 2 \frac{d^2s}{dt^2}=18-\frac{1}{\sqrt{2}t^{\frac{3}{2}}} d t 2 d 2 s = 18 − 2 t 2 3 1
18 − 1 2 t 3 2 = 0 18-\frac{1}{\sqrt{2}t^{\frac{3}{2}}}=0 18 − 2 t 2 3 1 = 0
18 ( 2 t 3 2 ) − 1 = 0 18({\sqrt{2}t^{\frac{3}{2}}})-1=0 18 ( 2 t 2 3 ) − 1 = 0
t 3 2 = 1 25.46 t^{\frac{3}{2}}=\frac{1}{25.46} t 2 3 = 25.46 1
t = 0.12 s e c o n d s t=0.12seconds t = 0.12 seco n d s
s = 9 t 2 + 2 2 t + 1 s=9t^2+2\sqrt{2t}+1 s = 9 t 2 + 2 2 t + 1
= 9 ( 0.12 ) 2 + 2 2 ( 0.12 ) + 1 =9(0.12)^2+2\sqrt{2(0.12)}+1 = 9 ( 0.12 ) 2 + 2 2 ( 0.12 ) + 1
=0.1296+1.9798
=2.1094 ft
Comments