Question #274842

A particle is moving along a straight line according to the given equation of motion, where s ft is the directed distance of the particle from the origin at t sec. Find the time when the instantaneous acceleration is zero, and then find the directed distance of the particle from the


a. 𝒔 = (𝟏𝟐𝟓)/ (𝟏𝟔𝒕+𝟑𝟐) − 2/5𝒕𝟓 , t≥𝟎

b. 𝒔= 𝟗𝒕𝟐 + 𝟐 √𝟐𝒕+𝟏, t≥𝟎


1
Expert's answer
2021-12-05T18:17:18-0500

a)

s=12516t+3225t5,t0s=\frac{125}{16t+32}-\frac{2}{5t^5},t\ge0

Acceleration =d2sdt2\frac{d^2s}{dt^2}

dsdt(s)=2t62000(16t+32)2\frac{ds}{dt}(s)=\frac{2}{t^6}-\frac{2000}{(16t+32)^2}

d2sdt2(s)=64000(16t+32)312t7\frac{d^2s}{dt^2}(s)=\frac{64000}{(16t+32)^3}-\frac{12}{t^7}

Time when Instantaneous acceleration is zero,

64000(16t+32)312t7=0\frac{64000}{(16t+32)^3}-\frac{12}{t^7}=0

64000t712(16t+32)3=064000t^7-12(16t+32)^3=0

64000t712(4096t3+24576t2+49152t+32768)=064000t^7-12(4096t^3+24576t^2+49152t+32768)=0

Solving to get t1.6839t\approx1.6839

Time=1.68 seconds

s=12516t+3225t5s=\frac{125}{16t+32}-\frac{2}{5t^5}

=12516(1.68)+3225(1.68)5=\frac{125}{16(1.68)+32}-\frac{2}{5(1.68)^5}

=0.055 ft

b)

s=9t2+22t+1,t0s=9t^2+2\sqrt{2t}+1,t\ge0

dsdt=18t+2t\frac{ds}{dt}=18t+\frac{\sqrt{2}}{\sqrt{t}}

d2sdt2=1812t32\frac{d^2s}{dt^2}=18-\frac{1}{\sqrt{2}t^{\frac{3}{2}}}

1812t32=018-\frac{1}{\sqrt{2}t^{\frac{3}{2}}}=0

18(2t32)1=018({\sqrt{2}t^{\frac{3}{2}}})-1=0

t32=125.46t^{\frac{3}{2}}=\frac{1}{25.46}

t=0.12secondst=0.12seconds

s=9t2+22t+1s=9t^2+2\sqrt{2t}+1

=9(0.12)2+22(0.12)+1=9(0.12)^2+2\sqrt{2(0.12)}+1

=0.1296+1.9798

=2.1094 ft


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS