Question #272448

Determine the critical numbers of the given function and classify each critical point as a relative maximum, a relative minimum, or neither. f(t) =(t^2)/t^2+t-2

1
Expert's answer
2021-12-22T17:59:33-0500

f(t)=t2t2+t2Differentiating, we obtainf(t)=t24t(t2+t2)2f(t)=t24t(t2+t2)2=0    t=0,t=4Using the 2nd test derivative, we evaluate 2nd order derivativef(t)=2(t36t24)(t1)3(t+2)3When t = 0, f(t)=1, using the 2nd derivative test, f is maximum at t = 0when t = 4, f(t)=0.012, using 2nd derivative test, f is minimum at t = 4\displaystyle f(t) = \frac{t^2}{t^2+t-2}\\ \text{Differentiating, we obtain}\\ f'(t)=\frac{t^2-4t}{(t^2+t-2)^2}\\ f'(t)=\frac{t^2-4t}{(t^2+t-2)^2}=0\\ \implies t = 0, t= 4\\ \text{Using the 2nd test derivative, we evaluate 2nd order derivative}\\ f''(t) =-\frac{2(t^3-6t^2-4)}{(t-1)^3(t+2)^3}\\ \text{When t = 0, $f''(t) =-1$, using the 2nd derivative test, f is maximum at t = 0}\\ \text{when t = 4, $f''(t) = 0.012$, using 2nd derivative test, f is minimum at t = 4}\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS