Question #272273

3. Find the angle of the largest right circular cone which can be inscribed in a sphere of


radius 9 inches.


4. A statue 10 feet high is standing on a base 13 feet high. If an observer’s eye is 5 feet


above the ground, how far should he stand from the base in order that the angle


between his lines of sight to the top and bottom of the statue is a maximum. (How far


should he stand to get the best view of the statue.


5. A steel girder 27 feet long is to be moved on rollers along a passageway 8 feet in


width and into a corridor at right angles to the passageway. If the horizontal width of


the girder is neglected, how wide must the corridor be in order that the girder can go


around the corner?

1
Expert's answer
2021-11-29T16:01:17-0500

3.



Let R=R= the radius of the sphere.

Let AD=r,BD=h,ABC=θ.AD=r, BD=h, \angle ABC=\theta.


ABC\triangle ABC

AC=2r,AO=OC=R,AOC=2ABC=2θAC=2r, AO=OC=R, \angle AOC=2\angle ABC=2\theta

The Law of Cosines


(2r)2=R2+R22R2cos(2θ)(2r)^2=R^2+R^2-2R^2\cos(2\theta)

4r2=2R2(2sin2θ)4r^2=2R^2(2\sin^2\theta)

r=Rsinθr=R\sin \theta

h=rtan(θ/2)=Rsinθtan(θ/2)h=r\tan(\theta/2)=R\sin \theta\tan(\theta/2)

Vcone=13πr2hV_{cone}=\dfrac{1}{3}\pi r^2 h

Vcone=Vcone(θ)=13πR3sin3θtan(θ/2)V_{cone}=V_{cone}(\theta)=\dfrac{1}{3}\pi R^3\sin^3 \theta\tan(\theta/2)

(Vcone)θ=13πR3(3sin2θcos(θ)tan(θ/2)(V_{cone})'_{\theta}=\dfrac{1}{3}\pi R^3\bigg(3\sin^2 \theta\cos(\theta)\tan(\theta/2)

+12sin3θ(1cos2(θ/2)))+\dfrac{1}{2}\sin^3\theta(\dfrac{1}{\cos ^2(\theta/2)})\bigg)

Find the critical numbr(s)


(Vcone)θ=0(V_{cone})'_{\theta}=0

13πR3(3sin2θcosθtan(θ/2)\dfrac{1}{3}\pi R^3\bigg(3\sin^2 \theta\cos\theta\tan(\theta/2)

+sin3θ2cos2(θ/2))=0+\dfrac{\sin^3\theta}{2\cos ^2(\theta/2)}\bigg)=0

sin3θ(3cosθ+1)2cos2(θ/2)=0\dfrac{\sin^3 \theta(3\cos\theta+1)}{2\cos ^2(\theta/2)}=0

cosθ=13\cos \theta=-\dfrac{1}{3}

If 0<θ<πcos1(1/3),(Vcone)θ>0,Vcone0< \theta<\pi-\cos^{-1}(1/3), (V_{cone})'_{\theta}>0, V_{cone} increases.


If πcos1(1/3)<θ<π,(Vcone)θ<0,Vcone\pi-\cos^{-1}(1/3)<\theta<\pi, (V_{cone})'_{\theta}<0, V_{cone} decreases.


The volune of inscribed cone has the absolute maximum at

θ=πcos1(1/3)\theta=\pi-\cos^{-1}(1/3)

4.


tanα=135x=8x\tan \alpha=\dfrac{13-5}{x}=\dfrac{8}{x}

tan(α+θ)=135+10x=18x\tan (\alpha+\theta)=\dfrac{13-5+10}{x}=\dfrac{18}{x}

tan(α+θ)=tanα+tanθ1tanαtanθ\tan (\alpha+\theta)=\dfrac{\tan \alpha+\tan \theta}{1-\tan \alpha\tan \theta}

8x+tanθ18x(tanθ)=18x\dfrac{\dfrac{8}{x}+\tan \theta}{1-\dfrac{8}{x}(\tan \theta)}=\dfrac{18}{x}

8+xtanθ=18144x(tanθ)8+x\tan \theta=18-\dfrac{144}{x}(\tan \theta)

tanθ=10xx2+144\tan \theta=\dfrac{10x}{x^2+144}

(tanθ)x=10(x2+1442x2)(x2+144)2(\tan\theta)'_x=\dfrac{10(x^2+144-2x^2)}{(x^2+144)^2}

=10(144x2)(x2+144)2=\dfrac{10(144-x^2)}{(x^2+144)^2}

Find the critical number(s)


(tanθ)x=0=>10(144x2)(x2+144)2=0(\tan\theta)'_x=0=>\dfrac{10(144-x^2)}{(x^2+144)^2}=0

x1=12,x2=12x_1=-12, x_2=12

We consider x0x\geq 0

If 0x<12,(tanθ)x=0>0,tanθ0\leq x<12, (\tan\theta)'_x=0>0, \tan \theta increases.


If x>12,(tanθ)x=0<0,tanθx>12, (\tan\theta)'_x=0<0, \tan \theta decreases.


The angle θ\theta has the local maximum at x=12x=12 ft.

Since the function tanθ\tan \theta has the only extremum for x0,x\geq 0, then the angle θ\theta has the absolute maximum for x0x\geq 0 at x=12x=12 ft.


5.


a=8cosθ,b=wsinθa=\dfrac{8}{\cos \theta}, b=\dfrac{w}{\sin \theta}

a+b=27a+b=27

8cosθ+wsinθ=24\dfrac{8}{\cos \theta}+\dfrac{w}{\sin \theta}=24

w=27sinθ8tanθw=27\sin \theta-8\tan \theta

Find the first derivative


wθ=27cosθ8cos2θw'_{\theta}=27\cos \theta-\dfrac{8}{\cos^2\theta}

Find the critical number(s)


wθ=0=>27cosθ8cos2θ=0w'_{\theta}=0=>27\cos \theta-\dfrac{8}{\cos^2\theta}=0

27cos3θ=827\cos^3\theta=8

cosθ=2/3\cos \theta=2/3

θ=cos1(2/3)\theta=\cos^{-1}(2/3)

If 0<θ<cos1(2/3),wθ>0,w0<\theta<\cos^{-1}(2/3), w'_{\theta}>0, w increases.


If cos1(2/3)<θ<π/2,wθ<0,w\cos^{-1}(2/3)<\theta<\pi/2, w'_{\theta}<0, w decreases.


sin2θ=1(2/3)2=5/9\sin^2\theta=1-(2/3)^2=5/9

sinθ=5/3\sin \theta=\sqrt{5}/3

w=27(5/3)8(5/2)w=27(\sqrt{5}/3)-8(\sqrt{5}/2)

w=55 ftw=5\sqrt{5}\ ft


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS