3.
Let R= the radius of the sphere.
Let AD=r,BD=h,∠ABC=θ.
△ABC
AC=2r,AO=OC=R,∠AOC=2∠ABC=2θ
The Law of Cosines
(2r)2=R2+R2−2R2cos(2θ)
4r2=2R2(2sin2θ)
r=Rsinθ
h=rtan(θ/2)=Rsinθtan(θ/2)
Vcone=31πr2h
Vcone=Vcone(θ)=31πR3sin3θtan(θ/2)
(Vcone)θ′=31πR3(3sin2θcos(θ)tan(θ/2)
+21sin3θ(cos2(θ/2)1))Find the critical numbr(s)
(Vcone)θ′=0
31πR3(3sin2θcosθtan(θ/2)
+2cos2(θ/2)sin3θ)=0
2cos2(θ/2)sin3θ(3cosθ+1)=0
cosθ=−31 If 0<θ<π−cos−1(1/3),(Vcone)θ′>0,Vcone increases.
If π−cos−1(1/3)<θ<π,(Vcone)θ′<0,Vcone decreases.
The volune of inscribed cone has the absolute maximum at
θ=π−cos−1(1/3)
4.
tanα=x13−5=x8
tan(α+θ)=x13−5+10=x18
tan(α+θ)=1−tanαtanθtanα+tanθ
1−x8(tanθ)x8+tanθ=x18
8+xtanθ=18−x144(tanθ)
tanθ=x2+14410x
(tanθ)x′=(x2+144)210(x2+144−2x2)
=(x2+144)210(144−x2) Find the critical number(s)
(tanθ)x′=0=>(x2+144)210(144−x2)=0
x1=−12,x2=12 We consider x≥0
If 0≤x<12,(tanθ)x′=0>0,tanθ increases.
If x>12,(tanθ)x′=0<0,tanθ decreases.
The angle θ has the local maximum at x=12 ft.
Since the function tanθ has the only extremum for x≥0, then the angle θ has the absolute maximum for x≥0 at x=12 ft.
5.
a=cosθ8,b=sinθw
a+b=27
cosθ8+sinθw=24
w=27sinθ−8tanθ Find the first derivative
wθ′=27cosθ−cos2θ8 Find the critical number(s)
wθ′=0=>27cosθ−cos2θ8=0
27cos3θ=8
cosθ=2/3
θ=cos−1(2/3) If 0<θ<cos−1(2/3),wθ′>0,w increases.
If cos−1(2/3)<θ<π/2,wθ′<0,w decreases.
sin2θ=1−(2/3)2=5/9
sinθ=5/3
w=27(5/3)−8(5/2)
w=55 ft
Comments