Question #272190

Expand (2x2 + y3)5using combinations.


1
Expert's answer
2021-12-01T11:29:26-0500
(2x2+y3)5=(50)(2x2)5(y3)0(2x^2 + y^3)^5=\dbinom{5}{0}(2x^2)^5(y^3)^0

+(51)(2x2)4(y3)1+(52)(2x2)3(y3)2+\dbinom{5}{1}(2x^2)^4(y^3)^1+\dbinom{5}{2}(2x^2)^3(y^3)^2

+(53)(2x2)2(y3)3+(54)(2x2)1(y3)4+\dbinom{5}{3}(2x^2)^2(y^3)^3+\dbinom{5}{4}(2x^2)^1(y^3)^4

+(55)(2x2)0(y3)5+\dbinom{5}{5}(2x^2)^0(y^3)^5

=32x10+80x8y3+80x6y6+40x4y9=32x^{10}+80x^8y^3+80x^6y^6+40x^4y^9

+10x2y12+y15+10x^2y^{12}+y^{15}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS