Question #271768

How to calculate cos x from its nth term in Maclaurin series??


1
Expert's answer
2021-11-29T05:26:11-0500

The Maclaurin series of f(x)=cosxf(x)=\cos x is

 

f(x)=n=0(1)nx2n(2n)!f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n) !}

 

Let us look at some details.

The Maclaurin series for f(x) in general can be found by

f(x)=n=0f(n)(0)n!xnf(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n !} x^{n}

Let us find the Maclaurin series for f(x)=cosx.f(x)=\cos x.

By taking the derivatives,

 f(x)=cosxf(0)=cos(0)=1f(x)=sinxf(0)=sin(0)=0f(x)=cosxf(0)=cos(0)=1f(x)=sinxf(0)=sin(0)=0f(4)(x)=cosxf(4)(0)=cos(0)=1\begin{aligned} &f(x)=\cos x \Rightarrow f(0)=\cos (0)=1 \\ &f^{\prime}(x)=-\sin x \Rightarrow f^{\prime}(0)=-\sin (0)=0 \\ &f^{\prime \prime}(x)=-\cos x \Rightarrow f^{\prime \prime}(0)=-\cos (0)=-1 \\ &f^{\prime \prime \prime}(x)=\sin x \Rightarrow f^{\prime \prime \prime}(0)=\sin (0)=0 \\ &f^{(4)}(x)=\cos x \Rightarrow f^{(4)}(0)=\cos (0)=1 \end{aligned}

Since f(x)=f(4)(x),f(x)=f^{(4)}(x), the cycle of {1,0,1,0}\{1,0,-1,0\} repeats itself.

So, we have the series

f(x)=1x22!+x44!=n=0(1)nx2n(2n)!f(x)=1-\frac{x^{2}}{2 !}+\frac{x^{4}}{4 !}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n) !}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS