Question #270753

For questions 1 consider the Maclaurin Series expansion of



x = + + + +1 x x2 x3 .....



e



2! 3!



1. The coefficient of the term containing x3 in the Maclaurin series expansion of e3x



is 3





1−e3x




1
Expert's answer
2021-11-24T17:39:36-0500

ex=1+x+x22!+x33!+...e^x=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+...

1. Then


e3x=1+3x+(3x)22!+(3x)33!+...e^{3x}=1+3x+\dfrac{(3x)^2}{2!}+\dfrac{(3x)^3}{3!}+...

(3x)33!=92x3\dfrac{(3x)^3}{3!}=\dfrac{9}{2}x^3

The coefficient of the term containing x3x^3 in the Maclaurin series expansion of e3xe^{3x} is 9/2.9/2.


2.


limx01e3xx\lim\limits_{x\to0}\dfrac{1-e^{3x}}{x}

=limx01(1+3x+(3x)22!+(3x)33!+..)x=\lim\limits_{x\to0}\dfrac{1-(1+3x+\dfrac{(3x)^2}{2!}+\dfrac{(3x)^3}{3!}+..)}{x}


=limx03x+(3x)22!+(3x)33!+..x=-\lim\limits_{x\to0}\dfrac{3x+\dfrac{(3x)^2}{2!}+\dfrac{(3x)^3}{3!}+..}{x}

=limx0(3+9x2!+27x23!+...)=3=-\lim\limits_{x\to0}(3+\dfrac{9x}{2!}+\dfrac{27x^2}{3!}+...)=-3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS