For questions 1 consider the Maclaurin Series expansion of
x = + + + +1 x x2 x3 .....
e
2! 3!
1. The coefficient of the term containing x3 in the Maclaurin series expansion of e3x
is 3
1−e3x
"e^x=1+x+\\dfrac{x^2}{2!}+\\dfrac{x^3}{3!}+..."
1. Then
"\\dfrac{(3x)^3}{3!}=\\dfrac{9}{2}x^3"
The coefficient of the term containing "x^3" in the Maclaurin series expansion of "e^{3x}" is "9\/2."
2.
"=\\lim\\limits_{x\\to0}\\dfrac{1-(1+3x+\\dfrac{(3x)^2}{2!}+\\dfrac{(3x)^3}{3!}+..)}{x}"
"=-\\lim\\limits_{x\\to0}(3+\\dfrac{9x}{2!}+\\dfrac{27x^2}{3!}+...)=-3"
Comments
Leave a comment