Let Sn be the sum of the areas of the rectangles. Each rectangle has width 1/n and the heights are the values of the function f(x)=x2 at the points 1/n,2/n,3/n,...,n/n. ; That is, the heights are (1/n)2,(2/n)2,(3/n)2,...,(n/n)2. Thus
S3=31(31)2+31(32)2+31(33)2
=331(12+22+32)=2714
S4=41(41)2+41(42)2+41(43)2+41(44)2
=431(12+22+32+42)=3215
The sum of areas of p rectangles
Sp=p1(p1)2+p1(p2)2+...+p1(pp)2
=p31i=1∑pi2=p31(6p(p+1)(2p+1))
=6p2(p+1)(2p+1)
Comments