Determine whether the function f (x) = x − x1 is odd, even or neither.
A function is even if f(x)=f(−x)f(x) = f(-x)f(x)=f(−x);
and if f(−x)=−f(x)f(-x) = -f(x)f(−x)=−f(x), then the function is odd;
if f(−x)≠f(x),f(−x)f(-x) \neq f(x) , f(-x)f(−x)=f(x),f(−x), then the function is neither
f(x)=x−x1f(−x)=−x−x1=−(x+x1)f(x) = x-x_1\\ f(-x) = -x -x_1 = -(x+x_1)f(x)=x−x1f(−x)=−x−x1=−(x+x1)
Since the function is neither even (x−x1)(x-x_1)(x−x1) or odd −(x−x1)-(x-x_1)−(x−x1), then it is neither...
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments