a.
x=0y=0, 0≤t≤π
sint=0sin(t+sint)=0, 0≤t≤π
Origin(0,0):t=0 or t=π
slope=dxdy=dx/dtdy/dt=costcos(t+sint)⋅(1+cost) t1=0:
slope1=cos(0)cos((0)+sin(0))⋅(1+cos(0))=2
The tangent line in point-slope form
y−0=2(x−0) The tangent line in slope-intercept form
y=2x
t2=π:
slope2=cos(π)cos((π)+sin(0))⋅(1+cos(π))=0 The tangent line in point-slope form
y−0=0(x−0) The tangent line in slope-intercept form
y=0
2.
x=−1y=−1, 0≤t≤π
2cost=−12−cos2t=−1, 0≤t≤π No solution. Point (−1,−1) does not lie on the given curve.
slope=dxdy=dx/dtdy/dt=−2sint2costsint=−cost, 0<t<π
Point (1,1.75)
x=1y=1.75, 0≤t≤π
2cost=12−cos2t=1.75, 0≤t≤π
t=π/3slope=cos(π/3)=−0.5
The tangent line in point-slope form
y−1.75=−0.5(x−1) The tangent line in slope-intercept form
y=−0.5x+2.25
Comments