Question #269473

a. Show that the curve with parametric equations

x=sint and y=sin(t+sint) for 0≤t≤2π

has two tangent lines at the origin and their equations. Illustrate by graphing the curve and its tangents.


b. Find the slope of the line tangent to the parametric curve

x=2cost and y=2-cos²t for 0≤t≤π

at points (-1, -1). Show the graph the parametric equations and the tangent line.


1
Expert's answer
2021-11-22T15:52:48-0500

a.


x=0y=0, 0tπ\begin{matrix} x=0 \\ y=0 \end{matrix}, \ 0\leq t\leq \pi

sint=0sin(t+sint)=0, 0tπ\begin{matrix} \sin t=0 \\ \sin(t+\sin t)=0 \end{matrix}, \ 0\leq t\leq \pi

Origin(0,0):t=0 or t=πOrigin(0, 0): t=0\ or\ t=\pi

slope=dydx=dy/dtdx/dt=cos(t+sint)(1+cost)costslope=\dfrac{dy}{dx}=\dfrac{dy/dt}{dx/dt}=\dfrac{\cos(t+\sin t)\cdot(1+\cos t)}{\cos t}

t1=0:t_1=0:


slope1=cos((0)+sin(0))(1+cos(0))cos(0)=2slope_1=\dfrac{\cos((0)+\sin (0))\cdot(1+\cos (0))}{\cos (0)}=2


The tangent line in point-slope form


y0=2(x0)y-0=2(x-0)

The tangent line in slope-intercept form


y=2xy=2x



t2=π:t_2=\pi:


slope2=cos((π)+sin(0))(1+cos(π))cos(π)=0slope_2=\dfrac{\cos((\pi)+\sin (0))\cdot(1+\cos (\pi))}{\cos (\pi)}=0

The tangent line in point-slope form


y0=0(x0)y-0=0(x-0)

The tangent line in slope-intercept form


y=0y=0



2.


x=1y=1, 0tπ\begin{matrix} x=-1 \\ y=-1 \end{matrix}, \ 0\leq t\leq \pi

2cost=12cos2t=1,  0tπ\begin{matrix} 2 \cos t=-1 \\ 2-\cos^2t=-1 \end{matrix}, \ \ 0\leq t\leq \pi

No solution. Point (1,1)(-1, -1) does not lie on the given curve.

slope=dydx=dy/dtdx/dt=2costsint2sint=cost,slope=\dfrac{dy}{dx}=\dfrac{dy/dt}{dx/dt}=\dfrac{2\cos t\sin t}{-2\sin t}=-\cos t,

0<t<π0<t<\pi

Point (1,1.75)(1, 1.75)


x=1y=1.75, 0tπ\begin{matrix} x=1 \\ y=1.75 \end{matrix}, \ 0\leq t\leq \pi

2cost=12cos2t=1.75, 0tπ\begin{matrix} 2\cos t=1 \\ 2-\cos^2 t=1.75 \end{matrix}, \ 0\leq t\leq \pi

t=π/3t=\pi/3slope=cos(π/3)=0.5slope=\cos(\pi/3)=-0.5


The tangent line in point-slope form


y1.75=0.5(x1)y-1.75=-0.5(x-1)

The tangent line in slope-intercept form


y=0.5x+2.25y=-0.5x+2.25




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS