Question #269315

Find:Differential to approximate value of cube root of 3.3

1
Expert's answer
2021-11-23T16:55:37-0500

Let f(x)=x13f(x)=x^{\frac 1 3} . Formula for approximate calculation using differential is presented below

f(x0+Δx)f(x0)+df(x0)f(x_0+Δx)\approx f(x_0)+df(x_0) , where df(x0)=f(x0)Δxdf(x_0)=f'(x_0)*Δx

f(x)=13x23=131(x2)13f'(x)={\frac 1 3}x^{-{\frac {2} 3}} = {\frac 1 3}*{\frac 1 {(x^2)^{\frac 1 3}}}

Now we have to present number 3.3 as x0+Δxx_0+Δx such that f(x0)f(x_0) is a perfect cube and ΔxΔx is relativately small. We can present it as 3.3 = 1 + 2.3, but 2.3 is a relativately big number, so the approximation error will be significant. Since 3.313=331310133.3^{\frac 1 3}={\frac {33^{\frac 1 3}} {10^{\frac 1 3}}} , then we can present 3.3 as 3310{\frac {33} {10}}

and calculate both f(33) and f(10) using differentiation

f(33)=f(27+6)=f(27)+f(27)6=2713+131(272)136=3+219=299f(33)=f(27+6)=f(27)+f'(27)*6=27^{\frac 1 3}+{\frac 1 3}*{\frac 1 {(27^2)^{\frac 1 3}}}*6=3+2*{\frac 1 9}={\frac {29} 9}

f(10)=f(8+2)=f(8)+f(8)2=813+131(82)132=2+21314=2+16=136f(10)=f(8+2)=f(8)+f'(8)*2=8^{\frac 1 3}+{\frac 1 3}*{\frac 1 {(8^2)^{\frac 1 3}}}*2=2+2*{\frac 1 3}*{\frac 1 4}=2+{\frac 1 6}={\frac {13} 6}

f(3.3)=f(33)f(10)=296913=119391.49f(3.3)={\frac {f(33)} {f(10)}}={\frac {29*6} {9*13}}=1{\frac {19} {39}}\approx1.49

Lets check the accuracy

1.493=3.3079591.49^3=3.307959 . The obtained number is close to 3.3, so we answer is very accurate


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS