Answer to Question #269047 in Calculus for shie

Question #269047

The drawing below shows a square with side a. A straight line intersects the square and encloses

an area A. The heights x and y on the left and right side (in a distance d from the square) of

the intersecting line can be varied. Assuming that x  y and x; y  a, nd an expression for

the enclosed area A(x; y) with respect to x and y.


1
Expert's answer
2021-12-08T15:46:30-0500


in "\\Delta AKF:"


"tan\\theta=\\frac{FK}{AK}=\\frac{EF-KE}{BC+CD+DE}=\\frac{y-x}{\\alpha+a+\\alpha}"


"tan\\theta=\\frac{y-x}{a+2\\alpha}"



"in\\ \\Delta AJG:"


"tan\\theta=\\frac{GJ}{AJ}=\\frac{GJ}{\\alpha+a}"


"GJ=(a+\\alpha)tan\\theta=\\frac{(y-x)(a+\\alpha)}{a+2\\alpha}"


"DG=GJ+JD=(a+\\alpha)tan\\theta+x"



"in\\ AID"


"tan\\theta=\\frac{HI}{AI}=\\frac{HI}{\\alpha}"


"HI=\\alpha tan\\theta"


"CH=IC+HI=x+\\alpha tan\\theta"


enclosed area is a shape of trapezoidal AC//CD


"Area=\\frac{1}{2}(CH+DG)\\times CD"


"=\\frac{1}{2}(x+\\alpha tan\\theta+(a+\\alpha)tan\\theta+x)\\times a"


"=\\frac{1}{2}(2x+(a+\\alpha)tan\\theta)\\times a"


"=\\frac{1}{2}(2x+(a+2\\alpha)\\frac{y-x}{(a+2\\alpha)})\\times a"


"=\\frac{1}{2}(2x+y-x)a"


"=\\frac{1}{2}(x+y)a"


"A(x,y)=\\frac{a}{2}(x+y)"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS