Question #262984

a) Let Φ(u, v) = (2 sin u cos v, 3 sin u sin v, cos u), for π/2 ≤ u, v ≤ π. Plot and describe the surface S parametrized by Φ.

b) Find the equation of the tangent plane to S at (u, v) = (3π/4, 3π/4).

c) Find the volume of the region in R3 bounded by the surface S and the coordinate planes.


1
Expert's answer
2021-11-09T16:11:01-0500

ANSWER

a)The surface S parametrized by Φ is part of the ellipsoid x24+y29+z2=1\frac { { x }^{ 2 } }{ 4 } +\frac { { y }^{ 2 } }{ 9 } +{ z }^{ 2 }=1 , since x24+y29+z2=\frac { { x }^{ 2 } }{ 4 } +\frac { { y }^{ 2 } }{ 9 } +{ z }^{ 2 }= sin2ucos2v+ sin2usin2v+cos2u  = \sin ^{ 2 }{ u } \cos ^{ 2 }{ v+ } \ \sin ^{ 2 }{ u\sin ^{ 2 }{ v+\cos ^{ 2 }{ u\ \ = } \ } }

=sin2u(cos2v+sin2v )+cos2u=sin2u+cos2u=1=\sin ^{ 2 }{ u } \left( \cos ^{ 2 }{ v+ } \sin ^{ 2 }{ v } \ \right) +\cos ^{ 2 }{ u=\sin ^{ 2 }{ u } +\cos ^{ 2 }{ u=1 } }






b)The point on the surface S corresponding to (u, v) = (3π/4, 3π/4) has Cartesian coordinates (1,3/2,1/2)(-1,3/2,-1/\sqrt { 2 } ) . Differentiating the equality x24+y29+z2=1\frac { { x }^{ 2 } }{ 4 } +\frac { { y }^{ 2 } }{ 9 } +{ z }^{ 2 }=1\quadwith respect to variables xx and yy we have: (x2)+2zzx=0,2(y9)+2zzy=0{ \left( \frac { x }{ 2 } \right) }+2z{ z }_{ x }^{ ' }=0\quad ,\quad 2{ \left( \frac { y }{ 9 } \right) }+2z{ z }_{ y }^{ ' }=0 .

So, zx(1,3/2)= 1/22/2= 2/4zy(1,3/2)=1/6 1/2= 26{ z }_{ x }^{ ' }(-1,3/2)=\frac { \ -1/2 }{ 2/\sqrt { 2 } } =-\ \sqrt { 2 } /4\, \quad { z }_{ y }^{ ' }(-1,3/2)=\frac { 1/6 }{ \ \quad 1/\sqrt { 2 } } =\frac { \ \sqrt { 2 } }{ 6 } . Consequently, the vector n=<24, 26,1>\overrightarrow { n } =\left< -\frac { \sqrt { 2 } }{ 4 } ,\frac { \ \sqrt { 2 } }{ 6 } ,-1 \right> is a normal vector to the S at the point

(1,3/2,1/2)(-1,3/2,-1/\sqrt { 2 } ) . Therefore, the equation of the tangent plane has the form:

24(x+1)+ 26(y32)(z+12)=0-\frac { \sqrt { 2 } }{ 4 } \left( x+1 \right) +\frac { \ \sqrt { 2 } }{ 6 } \left( y-\frac { 3 }{ 2 } \right) -\left( z+\frac { 1 }{ \sqrt { 2 } } \right) =0 or

z=2x4+ 2y3 2z=\frac { -\sqrt { 2 } x }{ 4 } +\frac { \ \sqrt { 2 } y }{ 3 } -\ \sqrt { 2 }

c) The region to be calculated is 1/8 of the ellipsoid . The volume of the ellipsoid x2 a2+y2b2+z2c2=1\frac { { x }^{ 2 } }{ \ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } +\frac { { z }^{ 2 } }{ { c }^{ 2 } } =1 is 43πabc\frac { 4 }{ 3 } \pi abc .Therefore, the volume is 1843π231=π.\frac { 1 }{ 8 } \cdot \frac { 4 }{ 3 } \pi 2\cdot 3\cdot 1=\pi .

Calculate the volume using the integral.Volume= V dzdxdy=D (1x24y29)dxdyVolume=\ \iiint _{ V }^{ \ }{ dzdxdy } =\iint _{ D }^{ \ }{ \left( \sqrt { 1-\frac { { x }^{ 2 } }{ 4 } -\frac { { y }^{ 2 } }{ 9 } } \right) dxdy } , where D={(x,y):x24+y291, }  {(x,y):2x0, 0y3}D=\left\{ (x,y):\frac { { x }^{ 2 } }{ 4 } +\frac { { y }^{ 2 } }{ 9 } \le 1,\ \right\} \ \cap \ \left\{ (x,y):-2\le x\le 0,\ 0\le y\le 3 \right\}. Passing to new variables (r,v)(r,v) x=2rcosv , y=3rsinvx=2r\cos { v } \ ,\ y=3r\sin { v } we get :Δ={(r,v):0r1,π2vπ}\Delta =\left\{ (r,v):0\le r\le 1,\quad \frac { \pi }{ 2 } \le v\le \pi \quad \right\} ,

D (1x24y29)dxdy=Δ 1r26rdrdv=\iint _{ D }^{ \ }{ \left( \sqrt { 1-\frac { { x }^{ 2 } }{ 4 } -\frac { { y }^{ 2 } }{ 9 } } \right) dxdy } =\iint _{ \Delta }^{ \ }{ \sqrt { 1-{ r }^{ 2 } } 6r } drdv=

=6π2πdv(011r2 rdr)= 3π2 (F(1)F(0))= π=6\int _{ \frac { \pi }{ 2 } }^{ \pi }{ dv\left( \int _{ 0 }^{ 1 }{ \sqrt { 1-{ r }^{ 2 } } \ r } dr \right) } =\ \frac { 3\pi }{ 2 } \ \left( F(1)-F(0) \right) =\ \pi , (F(r)= 23(1r2)3/2)(F(r)=\ { -\frac { 2 }{ 3 } \left( 1-{ r }^{ 2 } \right) }^{ 3/2 }) .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS