Question #262903

Find a complete and singular integrals of 2xz − px2 − 2qxy + pq = 0


1
Expert's answer
2021-11-09T14:19:10-0500

Solution;

f(x,y,z,p,q)=2xzpx22qxy+pq=0.....(1)f(x,y,z,p,q)=2xz-px^2-2qxy+pq=0.....(1)

Now the charpits auxiliary equations are;

dp2z2qy=dq0=dzpx2pq+2xyqpq=dxx2q=dy2xp\frac{dp}{2z-2qy}=\frac{dq}{0}=\frac{dz}{px^2-pq+2xyq-pq}=\frac{dx}{x^2-q}=\frac{dy}{2x-p}

The second fraction gives dq=0 ,which implies that q=a,a being an arbitrary constant.substitute in (1) we have;

2zxpx22axy+pa=02zx-px^2-2axy+pa=0

Which gives;

p=2x(zay)x2ap=\frac{2x(z-ay)}{x^2-a}

Substitute the values of p and q in dz=pdx+qdydz=pdx+qdy we get;

dz=2x(zay)x2adx+adydz=\frac{2x(z-ay)}{x^2-a}dx+ady

Rewritten as;

dzadyzay=2xx2adx\frac{dz-ady}{z-ay}=\frac{2x}{x^2-a}dx

After integration;

log(zay)=log(x2a)+logblog(z-ay)=log(x^2-a)+logb

Or

(zay)=b(x2a)(z-ay)=b(x^2-a)

From which;

z=ay+b(x2a)z=ay+b(x^2-a)

(a and b are arbitrary constants)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS