Solution;
f(x,y,z,p,q)=2xz−px2−2qxy+pq=0.....(1)
Now the charpits auxiliary equations are;
2z−2qydp=0dq=px2−pq+2xyq−pqdz=x2−qdx=2x−pdy
The second fraction gives dq=0 ,which implies that q=a,a being an arbitrary constant.substitute in (1) we have;
2zx−px2−2axy+pa=0
Which gives;
p=x2−a2x(z−ay)
Substitute the values of p and q in dz=pdx+qdy we get;
dz=x2−a2x(z−ay)dx+ady
Rewritten as;
z−aydz−ady=x2−a2xdx
After integration;
log(z−ay)=log(x2−a)+logb
Or
(z−ay)=b(x2−a)
From which;
z=ay+b(x2−a)
(a and b are arbitrary constants)
Comments