Question #251983

Question 4

Let f be the function defined by the formula,

f(x) = 1/x+1/x − 10

.

a) Determine the largest possible domain D of f.

b) Is f injective on D?

[8,5]


Question 5

Compute the f ◦ g and its range of the functions f and g below,

f(x) = (x^2 + 5x − 6)(x^2 + 5)/|2x + 3|

, and g(x) = √x + 4

[12]


Question 6

Determine the largest domain, intersection with axes, and sign of f

f(x) = log2(2 −2/x − 3)

[16]


1
Expert's answer
2021-10-18T16:07:32-0400

4.

a)

D={x(,0)(0,10)(10,)}D=\{x\isin (-\infin,0)\lor (0,10)\lor (10,\infin)\}


b)


an injective function is a function f that maps distinct elements to distinct elements; that is,

f(x1)=f(x2)f(x_1)=f(x_2) implies x1=x2x_1=x_2

So, f(x) is injective.


5.

fg=(6x2)(x+9)2x+4+3f\circ g=\frac{(6x-2)(x+9)}{|2\sqrt{x+4}+3|}


Range of f(x): (,)(-\infin,\infin)

Range of g(x): [0,)[0,\infin)

for fgf\circ g :

x[4,)x\isin [-4,\infin)

fg(4)=2253=1103f\circ g(-4)=\frac{-22\cdot 5}{3}=-\frac{110}{3}

Range of fgf\circ g : [110/3,)[-110/3,\infin)


6.

for f(x):

22x3>0    2x8x3>02-\frac{2}{x-3}>0\implies \frac{2x-8}{x-3}>0

domain: x(,3)(4,)x\isin (-\infin,3)\lor (4,\infin)

for x-intersection:

22x3=1    x=52-\frac{2}{x-3}=1\implies x=5

x-intersection: (5,0)(5,0)

for y-intersection:

log2(2+2/3)=log2(8/3)=3log23log_2(2+2/3)=log_2(8/3)=3-log_23

y-intersection: (0,3log23)(0,3-log_23)

for sign of f:

f(x)<0    0<2x8x3<1    x3>2x8f(x)<0\implies 0<\frac{2x-8}{x-3}<1\implies |x-3|>|2x-8|

f(x)<0f(x)<0 at x(4,5)x\isin (4,5)

f(x)>0f(x)>0 at x(,3)(5,)x\isin (-\infin,3)\lor (5,\infin)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS