Question 4
Let f be the function defined by the formula,
f(x) = 1/x+1/x − 10
.
a) Determine the largest possible domain D of f.
b) Is f injective on D?
[8,5]
Question 5
Compute the f ◦ g and its range of the functions f and g below,
f(x) = (x^2 + 5x − 6)(x^2 + 5)/|2x + 3|
, and g(x) = √x + 4
[12]
Question 6
Determine the largest domain, intersection with axes, and sign of f
f(x) = log2(2 −2/x − 3)
[16]
4.
a)
"D=\\{x\\isin (-\\infin,0)\\lor (0,10)\\lor (10,\\infin)\\}"
b)
an injective function is a function f that maps distinct elements to distinct elements; that is,
"f(x_1)=f(x_2)" implies "x_1=x_2"
So, f(x) is injective.
5.
"f\\circ g=\\frac{(6x-2)(x+9)}{|2\\sqrt{x+4}+3|}"
Range of f(x): "(-\\infin,\\infin)"
Range of g(x): "[0,\\infin)"
for "f\\circ g" :
"x\\isin [-4,\\infin)"
"f\\circ g(-4)=\\frac{-22\\cdot 5}{3}=-\\frac{110}{3}"
Range of "f\\circ g" : "[-110\/3,\\infin)"
6.
for f(x):
"2-\\frac{2}{x-3}>0\\implies \\frac{2x-8}{x-3}>0"
domain: "x\\isin (-\\infin,3)\\lor (4,\\infin)"
for x-intersection:
"2-\\frac{2}{x-3}=1\\implies x=5"
x-intersection: "(5,0)"
for y-intersection:
"log_2(2+2\/3)=log_2(8\/3)=3-log_23"
y-intersection: "(0,3-log_23)"
for sign of f:
"f(x)<0\\implies 0<\\frac{2x-8}{x-3}<1\\implies |x-3|>|2x-8|"
"f(x)<0" at "x\\isin (4,5)"
"f(x)>0" at "x\\isin (-\\infin,3)\\lor (5,\\infin)"
Comments
Leave a comment