Consider the given right triangle with legs of length x cm. and y cm. and angle θ radians. If x is decreasing at the rate of 3 cm/min. and y is increasing at the rate of 4 cm/min., at what rate is angle θ changing when x=5 cm. and y=2 cm. ?
y=xtanθy=xtan\thetay=xtanθ
θ=tan−1(y/x)\theta=tan^{-1}(y/x)θ=tan−1(y/x)
dθdt=11+(y/x)2⋅y′x−x′yx2=11+(2/5)2⋅4⋅5−3⋅252=1429\frac{d\theta}{dt}=\frac{1}{1+(y/x)^2}\cdot \frac{y'x-x'y}{x^2}=\frac{1}{1+(2/5)^2}\cdot \frac{4\cdot 5-3\cdot 2}{5^2}=\frac{14}{29}dtdθ=1+(y/x)21⋅x2y′x−x′y=1+(2/5)21⋅524⋅5−3⋅2=2914
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments