Let us find the derivative of function f(x)=x3exf(x)=x^3e^xf(x)=x3ex using the product rule (f(x)g(x))′=f′(x)g(x)+f(x)g′(x):(f(x)g(x))'=f'(x)g(x)+f(x)g'(x):(f(x)g(x))′=f′(x)g(x)+f(x)g′(x):
f′(x)=3x2ex+x3ex=x2(3+x)ex.f'(x)=3x^2e^x+x^3e^x=x^2(3+x)e^x.f′(x)=3x2ex+x3ex=x2(3+x)ex.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments