Question #240784

a) Find the linear and quadratic approximations of

sin(0.96π) tan(0.26π) + (0.96)^2 (0.26)

b) Compare these approximations with the actual value.


1
Expert's answer
2021-09-23T00:35:22-0400

(a) Given function is: f(x)=sin(0.96π)tan(0.26π)+(0.96)2(0.26)f(x)=sin(0.96π) tan(0.26π) + (0.96)^2 (0.26)

Since no point is given so we are calculating the value at point 0.

The linear approximation to f(x)=sin(π25)tan(13π50)+374415625 at x0=0f(x)=\sin \left(\frac{\pi}{25}\right) \tan \left(\frac{13 \pi}{50}\right)+\frac{3744}{15625} \ at \ x_{0}=0 \\

A linear approximation is given by: L(x)f(x0)+f(x0)(xx0).L(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) .

We are given that x0=0.x_{0}=0 .

Firstly, find the value of the function at the given point:

y0=f(x0)=sin(π25)tan(13π50)+374415625y_{0}=f\left(x_{0}\right)=\sin \left(\frac{\pi}{25}\right) \tan \left(\frac{13 \pi}{50}\right)+\frac{3744}{15625}

Secondly, find the derivative of the function, evaluated at the point: f(0).f^{\prime}(0) .

Next, evaluate the derivative at the given point to find slope.

f(0)=0f^{\prime}(0)=0

Plugging the values found, we get that: L(x)sin(π25)tan(13π50)+374415625+0(x(0)).L(x) \approx \sin \left(\frac{\pi}{25}\right) \tan \left(\frac{13 \pi}{50}\right)+\frac{3744}{15625}+0(x-(0)) .

Or, more simply: L(x)sin(π25)tan(13π50)+374415625.L(x) \approx \sin \left(\frac{\pi}{25}\right) \tan \left(\frac{13 \pi}{50}\right)+\frac{3744}{15625} .

Answer: L(x)sin(π25)tan(13π50)+3744156250.373082337744149L(x) \approx \sin \left(\frac{\pi}{25}\right) \tan \left(\frac{13 \pi}{50}\right)+\frac{3744}{15625} \approx 0.373082337744149


A quadratic approximation is given by: Q(x)f(x0)+f(x0)(xx0)+12f(x0)(xx0)2.Q(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2} .

We are given that x0=0.x_{0}=0 .

Firstly, find the value of the function at the given point:

y0=f(x0)=sin(π25)tan(13π50)+374415625y_{0}=f\left(x_{0}\right)=\sin \left(\frac{\pi}{25}\right) \tan \left(\frac{13 \pi}{50}\right)+\frac{3744}{15625}

Secondly, find the derivative of the function, evaluated at the point: f(0).f^{\prime}(0) .

Find the derivative: f(x)=0f^{\prime}(x)=0

Next, evaluate the derivative at the given point.

f(0)=0f^{\prime}(0)=0

Now, find the second derivative of the function evaluated at the point: f(0).f^{\prime \prime}(0) .

Find the second derivative: f(x)=0f^{\prime \prime}(x)=0

Next, evaluate the second derivative at the given point.

f(0)=0.f^{\prime \prime}(0)=0 .

Plugging the found values, we get that:

Q(x)sin(π25)tan(13π50)+374415625+0(x(0))+12(0)(x(0))2Simplify:Q(x)sin(π25)tan(13π50)+374415625.Answer:Q(x)sin(π25)tan(13π50)+374415625Q(x) \approx \sin \left(\frac{\pi}{25}\right) \tan \left(\frac{13 \pi}{50}\right)+\frac{3744}{15625}+0(x-(0))+\frac{1}{2}(0)(x-(0))^{2}\\ Simplify: Q(x) \approx \sin \left(\frac{\pi}{25}\right) \tan \left(\frac{13 \pi}{50}\right)+\frac{3744}{15625} .\\ Answer: Q(x) \approx \sin \left(\frac{\pi}{25}\right) \tan \left(\frac{13 \pi}{50}\right)+\frac{3744}{15625}


(b) Actual Value of function is: sin(π25)tan(13π50)+374415625\sin \left(\frac{\pi}{25}\right) \tan \left(\frac{13 \pi}{50}\right)+\frac{3744}{15625}

So, we can say that actual value of function is same as linear and quadratic approximation's value because no variable is there.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS