a) Find the linear and quadratic approximations of
sin(0.96π) tan(0.26π) + (0.96)^2 (0.26)
b) Compare these approximations with the actual value.
(a) Given function is: "f(x)=sin(0.96\u03c0) tan(0.26\u03c0) + (0.96)^2 (0.26)"
Since no point is given so we are calculating the value at point 0.
The linear approximation to "f(x)=\\sin \\left(\\frac{\\pi}{25}\\right) \\tan \\left(\\frac{13 \\pi}{50}\\right)+\\frac{3744}{15625} \\ at \\ x_{0}=0 \\\\"
A linear approximation is given by: "L(x) \\approx f\\left(x_{0}\\right)+f^{\\prime}\\left(x_{0}\\right)\\left(x-x_{0}\\right) ."
We are given that "x_{0}=0 ."
Firstly, find the value of the function at the given point:
"y_{0}=f\\left(x_{0}\\right)=\\sin \\left(\\frac{\\pi}{25}\\right) \\tan \\left(\\frac{13 \\pi}{50}\\right)+\\frac{3744}{15625}"
Secondly, find the derivative of the function, evaluated at the point: "f^{\\prime}(0) ."
Next, evaluate the derivative at the given point to find slope.
"f^{\\prime}(0)=0"
Plugging the values found, we get that: "L(x) \\approx \\sin \\left(\\frac{\\pi}{25}\\right) \\tan \\left(\\frac{13 \\pi}{50}\\right)+\\frac{3744}{15625}+0(x-(0)) ."
Or, more simply: "L(x) \\approx \\sin \\left(\\frac{\\pi}{25}\\right) \\tan \\left(\\frac{13 \\pi}{50}\\right)+\\frac{3744}{15625} ."
Answer: "L(x) \\approx \\sin \\left(\\frac{\\pi}{25}\\right) \\tan \\left(\\frac{13 \\pi}{50}\\right)+\\frac{3744}{15625} \\approx 0.373082337744149"
A quadratic approximation is given by: "Q(x) \\approx f\\left(x_{0}\\right)+f^{\\prime}\\left(x_{0}\\right)\\left(x-x_{0}\\right)+\\frac{1}{2} f^{\\prime \\prime}\\left(x_{0}\\right)\\left(x-x_{0}\\right)^{2} ."
We are given that "x_{0}=0 ."
Firstly, find the value of the function at the given point:
"y_{0}=f\\left(x_{0}\\right)=\\sin \\left(\\frac{\\pi}{25}\\right) \\tan \\left(\\frac{13 \\pi}{50}\\right)+\\frac{3744}{15625}"
Secondly, find the derivative of the function, evaluated at the point: "f^{\\prime}(0) ."
Find the derivative: "f^{\\prime}(x)=0"
Next, evaluate the derivative at the given point.
"f^{\\prime}(0)=0"
Now, find the second derivative of the function evaluated at the point: "f^{\\prime \\prime}(0) ."
Find the second derivative: "f^{\\prime \\prime}(x)=0"
Next, evaluate the second derivative at the given point.
"f^{\\prime \\prime}(0)=0 ."
Plugging the found values, we get that:
"Q(x) \\approx \\sin \\left(\\frac{\\pi}{25}\\right) \\tan \\left(\\frac{13 \\pi}{50}\\right)+\\frac{3744}{15625}+0(x-(0))+\\frac{1}{2}(0)(x-(0))^{2}\\\\\n \nSimplify: Q(x) \\approx \\sin \\left(\\frac{\\pi}{25}\\right) \\tan \\left(\\frac{13 \\pi}{50}\\right)+\\frac{3744}{15625} .\\\\\nAnswer: Q(x) \\approx \\sin \\left(\\frac{\\pi}{25}\\right) \\tan \\left(\\frac{13 \\pi}{50}\\right)+\\frac{3744}{15625}"
(b) Actual Value of function is: "\\sin \\left(\\frac{\\pi}{25}\\right) \\tan \\left(\\frac{13 \\pi}{50}\\right)+\\frac{3744}{15625}"
So, we can say that actual value of function is same as linear and quadratic approximation's value because no variable is there.
Comments
Leave a comment